Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi I là giao điểm của ( d 1 ) và ( d 2 ). Khi đó tọa độ của I là nghiệm của hệ phương trình:
Tọa độ điểm I là I(5; -1)
Đường thẳng (d): y = (2m – 5)x – 5m đi qua I(5; -1) nên tọa độ của I nghiệm đúng phương trình đường thẳng:
Ta có: -1 = (2m – 5).5 – 5m ⇔ -1 = 10m – 25 – 5m
⇔ 5m = 24 ⇔ m = 24/5
Vậy với m = 24/5 thì đường thẳng (d) đi qua giao điểm của hai đường thẳng ( d 1 ) và ( d 2 ).
*Đường thẳng ( d 1 ): 5x – 2y = c đi qua điểm A(5; -1) nên tọa độ điểm A nghiệm đúng phương trình đường thẳng.
Ta có: 5.5 – 2.(-1) = c ⇔ 25 + 2 = c ⇔ c = 27
Phương trình đường thẳng ( d 1 ): 5x – 2y = 27
*Đường thẳng ( d 2 ): x + by = 2 đi qua điểm B(-7; 3) nên tọa độ điểm B nghiệm đúng phương trình đường thẳng.
Ta có: -7 + 3b = 2 ⇔ 3b = 9 ⇔ b = 3
Phương trình đường thẳng ( d 2 ): x + 3y = 2
*Tọa độ giao điểm của ( d 1 ) và ( d 2 ) là nghiệm của hệ phương trình:
Vậy tọa độ giao điểm của ( d 1 ) và ( d 2 ) là (5; -1).
a: Theo đề, ta có hệ:
2a+b=-1 và a+b=-3
=>a=2 và b=-5
b; tọa độ giao là:
2x+y=-3 và 3x-2y=-1
=>x=-1 và y=-1
b. PTHDGD: \(\dfrac{5}{2}x-4=3x-1\Leftrightarrow\dfrac{1}{2}x=-3\Leftrightarrow x=-6\Leftrightarrow y=-17\Leftrightarrow A\left(-6;-17\right)\)
Vậy \(A\left(-6;-17\right)\) là tọa độ giao điểm
c. Gọi \(\left(d_1\right):y=ax+b\left(a\ne0\right)\) là đt cần tìm
\(\left(d_1\right)//\left(d\right);A\left(-2;3\right)\in\left(d_1\right)\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{5}{2}\\b\ne-4\\-2a+b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{5}{2}\\b=8\end{matrix}\right.\)
Vậy \(\left(d_1\right):y=\dfrac{5}{2}x+8\)
Chúc bạn học tốt!