Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\lim\limits_{x\rightarrow0}\dfrac{\left(\sqrt{x+3}-2\right)sinx}{x^2-x}=\lim\limits_{x\rightarrow0}\dfrac{\left(\sqrt{x+3}-2\right)}{x-1}.\dfrac{sinx}{x}=\dfrac{\sqrt{3}-1}{-1}.1=1-\sqrt{3}\) hữu hạn
\(\lim\limits_{x\rightarrow1}\dfrac{\left(\sqrt{x+3}-2\right)sinx}{x^2-x}=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)sinx}{\left(x-1\right)x\left(\sqrt{x+3}+2\right)}=\lim\limits_{x\rightarrow1}\dfrac{sinx}{x\left(\sqrt{x+3}+2\right)}=\dfrac{sin1}{4}\) hữu hạn
\(\Rightarrow\) Đồ thị hàm số không có tiệm cận đứng
Hay số tiệm cận đứng là 0
\(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{x-1}}{x^2-3x+2}=\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{\dfrac{1}{x^3}-\dfrac{1}{x^4}}}{1-\dfrac{3}{x}+\dfrac{2}{x^2}}=0\)
\(\Rightarrow y=0\) là tiệm cận ngang
\(\lim\limits_{x\rightarrow1^+}\dfrac{\sqrt{x-1}}{x^2-3x+2}=\lim\limits_{x\rightarrow1^+}\dfrac{1}{\sqrt{x-1}\left(x-2\right)}=\infty\)
\(\Rightarrow x=1\) là tiệm cận đứng
\(\lim\limits_{x\rightarrow2}\dfrac{\sqrt{x-1}}{x^2-3x+2}=\dfrac{1}{0}=\infty\)
\(\Rightarrow x=2\) là tiệm cận đứng
ĐTHS có 1 TCN và 2 TCĐ
Hàm không có tiệm cận đứng khi: \(x^2-\left(2m+3\right)x+2\left(m-1\right)=0\) có nghiệm \(x=2\)
\(\Rightarrow4-2\left(2m+3\right)+2\left(m-1\right)=0\)
\(\Rightarrow m=-2\)
\(\lim\limits_{x\rightarrow+\infty}\dfrac{2019x}{\sqrt{17x^2-1}-m\left|x\right|}=\lim\limits_{x\rightarrow+\infty}\dfrac{2019}{\sqrt{17-\dfrac{1}{x^2}}-m}=\dfrac{2019}{\sqrt{17}-m}\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{2019x}{\sqrt{17x^2-1}-m\left|x\right|}=\dfrac{2019}{m-\sqrt{17}}\)
Với \(m\ne\sqrt{17}\Rightarrow\) đồ thị hàm số luôn có 2 tiệm cận ngang
Với \(m=\sqrt{17}\) đồ thị hàm số ko có tiệm cận ngang
Xét phương trình: \(\sqrt{17x^2-1}=m\left|x\right|\)
- Với \(m< 0\Rightarrow\) pt vô nghiệm \(\Rightarrow\) ko có tiệm cận đứng \(\Rightarrow\) ĐTHS có tối đa 2 tiệm cận (ktm)
- Với \(m\ge0\)
\(\Leftrightarrow17x^2-1=m^2x^2\Leftrightarrow\left(17-m^2\right)x^2=1\)
+ Nếu \(\left[{}\begin{matrix}m\ge\sqrt{17}\\m\le-\sqrt{17}\end{matrix}\right.\) pt vô nghiệm \(\Rightarrow\) ĐTHS có tối đa 2 tiệm cận (ktm)
+ Nếu \(-\sqrt{17}< m< \sqrt{17}\) pt có 2 nghiệm \(\Rightarrow\) ĐTHS có 2 tiệm cận đứng
Vậy \(m=\left\{0;1;2;3;4\right\}\) có 5 phần tử
Hàm nhận \(x=3\) là tiệm cận đứng và \(y=1\) là tiệm cận ngang
Gọi \(M\left(a;b\right)\Rightarrow b=\dfrac{a+2}{a-3}\)
Khoảng cách đến tiệm cận đứng: \(\left|x_M-3\right|=\left|a-3\right|\)
Khoảng cách đến tiệm cận ngang: \(\left|y_M-1\right|=\left|b-1\right|\)
Ta có hệ: \(\left\{{}\begin{matrix}b=\dfrac{a+2}{a-3}\\\left|b-1\right|=5\left|a-3\right|\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}M\left(4;6\right)\\M\left(2;-4\right)\end{matrix}\right.\) có 2 điểm
Đề bài sai, do pt \(x^2+3x+4=0\) vô nghiệm nên đồ thị hàm số không có TCĐ nào với mọi m
\(x-m=0\Rightarrow x=m\)
Để ĐTHS không có TCĐ
\(\Rightarrow2x^2-3x+m=0\) có nghiệm \(x=m\)
\(\Rightarrow2m^2-3m+m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=1\end{matrix}\right.\)
\(y=\dfrac{\left(x-1\right)\left(x-2\right)sinx}{x\left(x-2\right)\left(x+2\right)}\)
\(\lim\limits_{x\rightarrow0}\dfrac{\left(x-1\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}.\dfrac{sinx}{x}=\dfrac{2}{-4}.1=-\dfrac{1}{2}\) hữu hạn \(\Rightarrow x=0\) ko phải TCĐ
Tương tự: \(\lim\limits_{x\rightarrow2}\dfrac{\left(x-2\right)\left(x-1\right)sinx}{\left(x-2\right)\left(x+2\right)x}=\dfrac{1.sin2}{8}\) hữu hạn
\(\lim\limits_{x\rightarrow-2}\dfrac{\left(x-2\right)\left(x-1\right)sinx}{\left(x-2\right)\left(x+2\right)x}=\dfrac{12sin\left(-2\right)}{0}=-\infty\)
\(\Rightarrow x=-2\) là TCĐ duy nhất của ĐTHS