K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 4 2023

Đặt \(x+\dfrac{1}{x}=t\Rightarrow t^2=x^2+\dfrac{1}{x^2}+2\)

Pt trở thành:

\(7t+2\left(t^2-2\right)=5\Leftrightarrow2t^2+7t-9=0\)

\(\Rightarrow\left[{}\begin{matrix}t=1\\t=-\dfrac{9}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{x}=1\\x+\dfrac{1}{x}=-\dfrac{9}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2-x+1=0\left(vô-nghiệm\right)\\x^2+\dfrac{9}{2}x+1=0\end{matrix}\right.\)

Theo hệ thức Viet: \(x_1x_2=\dfrac{c}{a}=1\)

10 tháng 8 2021

Chép lại đề bài: ....
Đk: x\(\ge\)1
\(\sqrt[4]{x^2-1}=\sqrt[4]{\left(x-1\right).\left(x+1\right)} \) (1)
chia cả 2 vế cho (1): \(3.\sqrt[4]{\dfrac{x-1}{x+1}}+m.\sqrt[4]{\dfrac{x+1}{x-1}}=1\)    (đk: x>1)
Đặt \(\sqrt[4]{\dfrac{x-1}{x+1}}=t\) (t>0)   => 3t +\(\dfrac{m}{t}\)=1
                                  <=> 3t2  -t+m=0 (2)
Đến đây ta biện luận nghiệm của pt (2) có nghiệm dương

NV
27 tháng 1 2022

ĐKXĐ: \(-3\le x\le1\)

\(4+2\sqrt{-x^2-2x+3}=m+1-x^2-2x\)

\(\Leftrightarrow x^2+2x+3+2\sqrt{-x^2-2x+3}=m\)

Đặt \(\sqrt{-x^2-2x+3}=t\in\left[0;2\right]\)

\(\Rightarrow-t^2+2t+6=m\)

Xét hàm \(f\left(t\right)=-t^2+2t+6\) trên \(\left[0;2\right]\)

\(f'\left(t\right)=-2t+2=0\Rightarrow t=1\)

\(f\left(0\right)=6;f\left(1\right)=7;f\left(2\right)=6\Rightarrow6\le m\le7\)

13 tháng 2 2016

Bài 1: Giải các phương trình 

a)17x+15(x-1)=1-14(3x+1)   b)2x(x+5)-(x-3)=x2+6   c)(4x+7)(x-5)-3x2=x(x-1) d) 6(x-3)+(x-1)

 

 

1 tập nghiệm S của bất pt \(4^{x+\frac{1}{2}}-5.2^x+2\le0\) A S=\(\left\{-1;1\right\}\) B=[-1;1] C S= \(\) ( \(-\infty;-1\)] \(\cup\) [\(1;+\infty\) ) D S=(-1;1) 2 Tập nghiệm của bất pt \(log_6\left[x.\left(5-x\right)\right]< 1\) A (0;2)\(\cup\) (3;5) B (2;3) C (0;5)\\(\left\{2;3\right\}\) D (0;3) \(\cup\) (3;5) 3 tập nghiệm của bất pt \(\left(\sqrt{6}-\sqrt{5}\right)^{x-1}\ge\left(\sqrt{6}+\sqrt{5}\right)^{2x-5}\) là 4 tập nghiệm của bất pt \(\left(\frac{1}{3}\right)^{\sqrt{x+2}}>3^{-x}\) là A (2;+\(\infty\)) B (1;2) C (1;2] D [2;\(+\infty\) ) 5 Giai bất pt \(\left(\frac{3}{4}\right)^{2x-1}\le\left(\frac{4}{3}\right)^{-2x+x}\) A X\(\ge\)1 B X<1 C X\(\le\) 1 D x>1 6 bất pt \(log_4\left(x+7\right)log_2\left(x+1\right)\) có tập...
Đọc tiếp

1 tập nghiệm S của bất pt \(4^{x+\frac{1}{2}}-5.2^x+2\le0\)

A S=\(\left\{-1;1\right\}\) B=[-1;1] C S= \(\) ( \(-\infty;-1\)] \(\cup\) [\(1;+\infty\) ) D S=(-1;1)

2 Tập nghiệm của bất pt \(log_6\left[x.\left(5-x\right)\right]< 1\)

A (0;2)\(\cup\) (3;5) B (2;3) C (0;5)\\(\left\{2;3\right\}\) D (0;3) \(\cup\) (3;5)

3 tập nghiệm của bất pt \(\left(\sqrt{6}-\sqrt{5}\right)^{x-1}\ge\left(\sqrt{6}+\sqrt{5}\right)^{2x-5}\)

4 tập nghiệm của bất pt \(\left(\frac{1}{3}\right)^{\sqrt{x+2}}>3^{-x}\)

A (2;+\(\infty\)) B (1;2) C (1;2] D [2;\(+\infty\) )

5 Giai bất pt \(\left(\frac{3}{4}\right)^{2x-1}\le\left(\frac{4}{3}\right)^{-2x+x}\)

A X\(\ge\)1 B X<1 C X\(\le\) 1 D x>1

6 bất pt \(log_4\left(x+7\right)>log_2\left(x+1\right)\) có tập nghiệm là

A (5;\(+\infty\) ) B (-1;2) C (2;4) D (-3;2)

7 Tìm số nghiệm nguyên dương của bất pt \(\left(\frac{1}{5}\right)^{x^2-2x}\ge\frac{1}{125}\)

8 f(x)=\(x.e^{-3x}\) . tập nghiệm của bất pt \(f^,\) (x)>0

A (0;1/3) B (0;1) C \(\left(\frac{1}{3};+\infty\right)\) D \(\left(-\infty;\frac{1}{3}\right)\)

9 biết S =[a,b] là tập nghiệm của bất pt \(3.9^x-10.3^x+3\le0\) . Tìm T=b-a

10 TẬP nghiệm của bất pt \(log_{\frac{1}{3}}\frac{1-2x}{x}>0\)

11 có bao nhiêu nghiệm âm lớn hơn -2021 của bất pt \(\left(2-\sqrt{3}\right)^x>\left(2+\sqrt{3}\right)^{x+2}\)

A 2019 B 2020 C 2021 D 2018

12 Biết tập nghiệm S của bất pt \(log_{\frac{\pi}{6}}\left[log_3\left(x-2\right)\right]>0\) là khoảng (a,b) . Tính b-a

13 tập nghiệm của bất pt \(16^x-5.4^x+4\ge0\)

14 nếu \(log_ab=p\)\(log_aa^2.b^4\)bằng

A 4p+2 B 4p+2a c \(a^2+p^4\) D \(p^4+2a\)

15 cho a,b là số thực dương khác 1 thỏa \(log_{a^2}b+log_{b^2}a=1\) mệnh đề nào đúng

A a=\(\frac{1}{b}\) B a=b C a=\(\frac{1}{b^2}\) D a=\(b^2\)

16 đặt \(2^a=\)3 , khi đó \(log_3\sqrt[3]{16}\) bằng

6
NV
2 tháng 7 2020

14.

\(log_aa^2b^4=log_aa^2+log_ab^4=2+4log_ab=2+4p\)

15.

\(\frac{1}{2}log_ab+\frac{1}{2}log_ba=1\)

\(\Leftrightarrow log_ab+\frac{1}{log_ab}=2\)

\(\Leftrightarrow log_a^2b-2log_ab+1=0\)

\(\Leftrightarrow\left(log_ab-1\right)^2=0\)

\(\Rightarrow log_ab=1\Rightarrow a=b\)

16.

\(2^a=3\Rightarrow log_32^a=1\Rightarrow log_32=\frac{1}{a}\)

\(log_3\sqrt[3]{16}=log_32^{\frac{4}{3}}=\frac{4}{3}log_32=\frac{4}{3a}\)

NV
2 tháng 7 2020

11.

\(\Leftrightarrow1>\left(2+\sqrt{3}\right)^x\left(2+\sqrt{3}\right)^{x+2}\)

\(\Leftrightarrow\left(2+\sqrt{3}\right)^{2x+2}< 1\)

\(\Leftrightarrow2x+2< 0\Rightarrow x< -1\)

\(\Rightarrow\)\(-2+2020+1=2019\) nghiệm

12.

\(\Leftrightarrow\left\{{}\begin{matrix}x-2>0\\0< log_3\left(x-2\right)< 1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>2\\1< x-2< 3\end{matrix}\right.\)

\(\Rightarrow3< x< 5\Rightarrow b-a=2\)

13.

\(4^x=t>0\Rightarrow t^2-5t+4\ge0\)

\(\Rightarrow\left[{}\begin{matrix}t\le1\\t\ge4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}4^x\le1\\4^x\ge4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x\le0\\x\ge1\end{matrix}\right.\)

9 tháng 8 2021

Đặt \(\sqrt{x^2-4x+5}=t\left(t\ge1\right)\)

\(\sqrt{x^2-4x+5}=m+4x-x^2\)

\(\Leftrightarrow m=x^2-4x+5+\sqrt{x^2-4x+5}-5\)

\(\Leftrightarrow m=f\left(t\right)=t^2+t-5\)

Phương trình có nghiệm khi \(m\ge minf\left(t\right)=-3\)