K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 1 2021

Thế \(\left(x;y\right)=\left(0;-1\right)\) vào ta được \(f\left(0\right)=0\)

Thế \(y=0\Rightarrow f\left(f\left(x\right)\right)=x\)

Do vế phải của biểu thức trên là hàm bậc nhất \(\Rightarrow\) có tập giá trị là \(Z\Rightarrow f\) là toàn ánh

Giả sử tồn tại \(x_1;x_2\) sao cho \(f\left(x_1\right)=f\left(x_2\right)=a\Rightarrow\left\{{}\begin{matrix}f\left(f\left(x_1\right)\right)=x_1\Rightarrow f\left(a\right)=x_1\\f\left(f\left(x_2\right)\right)=x_2\Rightarrow f\left(a\right)=x_2\end{matrix}\right.\)

\(\Rightarrow x_1=x_2\Rightarrow f\) là đơn ánh \(\Rightarrow f\) là song ánh

Thế \(\left(x;y\right)=\left(1;-1\right)\Rightarrow f\left(0\right)=1+f\left(-1\right)\Rightarrow f\left(-1\right)=-1\)

Thế \(\left(x;y\right)=\left(-1;f\left(1\right)\right)\Rightarrow f\left(f\left(-1\right)+f^2\left(1\right)\right)=-1+f\left(f\left(1\right)\right)\)

\(\Rightarrow f\left(f^2\left(1\right)-1\right)=-1+1=0\Rightarrow f^2\left(1\right)-1=0\) (do \(f\) song ánh)

\(\Rightarrow f^2\left(1\right)=1\Rightarrow f\left(1\right)=1\) (cũng vẫn do \(f\) song ánh nên \(f\left(1\right)\ne-1\) do \(f\left(-1\right)=-1\))

Thế \(\left(x;y\right)=\left(1;x\right)\Rightarrow f\left(1+x\right)=1+f\left(x\right)\) (1)

Từ đẳng thức trên, do \(x\in Z\) nên ta có thể quy nạp để tìm hàm \(f\):

- Với \(x=0\Rightarrow f\left(1\right)=1\)

- Với \(x=1\Rightarrow f\left(2\right)=f\left(1+1\right)=1+f\left(1\right)=2\)

- Giả sử \(f\left(k\right)=k\), ta cần chứng minh \(f\left(1+k\right)=1+k\), nhưng điều này hiển nhiên đúng theo (1)

Vậy \(f\left(x\right)=x\) là hàm cần tìm

AH
Akai Haruma
Giáo viên
9 tháng 8 2021

Bài 1:

Cho $y=0$ thì: $f(x^3)=xf(x^2)$

Tương tự khi cho $x=0$

$\Rightarrow f(x^3-y^3)=xf(x^2)-yf(y^2)=f(x^3)-f(y^3)$

$\Rightarrow f(x-y)=f(x)-f(y)$ với mọi $x,y\in\mathbb{R}$

Cho $x=0$ thì $f(-y)=0-f(y)=-f(y)$

Cho $y\to -y$ thì: $f(x+y)=f(x)-f(-y)=f(x)--f(y)=f(x)+f(y)$ với mọi $x,y\in\mathbb{R}$

Đến đây ta có:

$f[(x+1)^3+(x-1)^3]=f(2x^3+6x)=f(2x^3)+f(6x)$
$=2f(x^3)+6f(x)=2xf(x^2)+6f(x)$

$f[(x+1)^3+(x-1)^3]=f[(x+1)^3-(1-x)^3]$

$=(x+1)f((x+1)^2)-(1-x)f((1-x)^2)$

$=(x+1)f(x^2+2x+1)+(x-1)f(x^2-2x+1)$

$=(x+1)[f(x^2)+2f(x)+f(1)]+(x-1)[f(x^2)-2f(x)+f(1)]$

$=2xf(x^2)+4f(x)+2xf(1)$

Do đó:

$2xf(x^2)+6f(x)=2xf(x^2)+4f(x)+2xf(1)$

$2f(x)=2xf(1)$

$f(x)=xf(1)=ax$ với $a=f(1)$

 

7 tháng 8 2021

\(f\left(x^5+y^5+y\right)=x^3f\left(x^2\right)+y^3f\left(y^2\right)+f\left(y\right)\)

Sửa lại đề câu 2 !!