K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2018

29 tháng 9 2016

Theo mình:

để hàm số đồng biến, đk cần là y'=0.

a>0 và \(\Delta'< 0\)

nghịch biến thì a<0 

vì denta<0 thì hầm số cùng dấu với a

mình giải được câu a với b

câu c có hai cực trị thì a\(\ne\)0, y'=0, denta>0 (để hàm số có hai nghiệm pb) 

câu d dùng viet

câu e mình chưa chắc lắm ^^

NV
8 tháng 7 2021

\(y'=-x^2-2\left(m-2\right)x+m-2\)

Hàm nghịch biến trên TXĐ khi và chỉ khi \(y'\le0;\forall x\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=-1< 0\left(đúng\right)\\\Delta'=\left(m-2\right)^2+m-2\le0\end{matrix}\right.\)

\(\Leftrightarrow\left(m-2\right)\left(m-1\right)\le0\)

\(\Leftrightarrow1\le m\le2\)

14 tháng 12 2019

 Đáp án B

Phương pháp:

Hàm số y = f(x) nghịch biến trên (-∞;+∞) khi và chỉ khi f'(x) ≤ 0, ∀ x ∈ (-∞;+∞), f'(x) = 0 tại hữu hạn điểm.

Cách giải:

Đề thi Học kì 1 Toán 12 có đáp án (Đề 1)

Hàm số đã cho nghịch biến trên khoảng (-∞;+∞)

NV
29 tháng 7 2021

3.

\(y'=\dfrac{3m-1}{\left(x+3m\right)^2}\)

Hàm nghịch biến trên khoảng đã cho khi:

\(\left\{{}\begin{matrix}3m-1< 0\\-3m\le6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{1}{3}\\m\ge-2\end{matrix}\right.\)

\(\Rightarrow-2\le m< \dfrac{1}{3}\Rightarrow m=\left\{-2;-1;0\right\}\)

4.

\(y'=\dfrac{3m-2}{\left(x+3m\right)^2}\)

Hàm đồng biến trên khoảng đã cho khi:

\(\left\{{}\begin{matrix}3m-2>0\\-3m\ge-6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>\dfrac{2}{3}\\m\le2\end{matrix}\right.\)

\(\Rightarrow\dfrac{2}{3}< m\le2\Rightarrow m=\left\{1;2\right\}\)

18 tháng 4 2017

Đáp án: A.

Hàm số nghịch biến trên từng khoảng ( - ∞ ; -m), (-m;  + ∞ ) khi và chỉ khi

⇔ - m 2  + 5m - 4 < 0

 

 

21 tháng 6 2021

undefined

13 tháng 5 2018

Đáp án: A.

Hàm số nghịch biến trên từng khoảng (- ∞ ; -m), (-m; + ∞ ) khi và chỉ khi

Giải sách bài tập Toán 12 | Giải sbt Toán 12

⇔ - m 2 + 5m - 4 < 0

⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12