K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2019

\(12x^2+6xy+3y^2=28\left(x+y\right)\)

\(\Leftrightarrow3y^2+2\left(3x-14\right)y+12x^2-28x=0\)      (1)

Xem (1) là phương trình bậc hai ẩn y thì (1) có nghiệm nguyên khi và chỉ khi \(\Delta'\)là số chính phương

\(\Delta'=\left(3x-14\right)^2-36x^2+84x=k^2\ge0\)

      \(=-27x^2+196=k^2\ge0\Rightarrow27x^2\le196\Rightarrow x^2\le7\)

                                                               \(\Rightarrow x\in\left\{0;\pm1;\pm2\right\}\)

Nếu x = 0 thì y = 0

       x = 1 thì y = 8

       x = -1 thì y = 10

      x = \(\pm2\)thì y \(\notin Z\)

Vậy các cặp số (x;y) thỏa mãn đề bài là : (0;0);(1;8);(-1;10)

2 tháng 3 2022

\(x^2+6xy+5y^2-4y-8=0\)

\(\Leftrightarrow (x^2+6xy+9y^2)-(4y^2+4y+1)=7\)

\(\Leftrightarrow (x+3y)^2-(2y+1)^2=7\)

\(\Leftrightarrow (x+y-1)(x+5y+1)=7\)

Vì x,y nguyên nên ta có các trường hợp sau:

TH1: \(\begin{cases} x+y-1=1\\ x+5y+1=7 \end{cases} \Leftrightarrow \begin{cases} x+y-1=1\\ 4y+2=6 \end{cases} \Leftrightarrow \begin{cases} x=1\\ y=1 \end{cases}\)

Các TH còn lại bạn tự làm nhé

2 tháng 3 2022

\(x^2+6xy+5y^2-4y-8=0\)

\(\Leftrightarrow\left(x^2+6xy+9y^2\right)-4y^2-4y-1-7=0\)

\(\Leftrightarrow\left(x+3y\right)^2-\left(2y+1\right)^2=7\)

\(\Leftrightarrow\left(x+5y+1\right)\left(x+y-1\right)=7=\left[{}\begin{matrix}1.7\\7.1\\\left(-1\right).\left(-7\right)\\\left(-7\right).\left(-1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5y+1=1;x+y-1=7\\x+5y+1=7;x+y-1=1\\x+5y+1=-1;x+y-1=-7\\x+5y+1=-7;x+y-1=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=10;y=-2\left(nhận\right)\\x=y=1\left(nhận\right)\\x=y=1\left(nhận\right)\\x=10;y=-2\left(nhận\right)\end{matrix}\right.\)

-Vậy các cặp số (x,y) là \(\left(10;-2\right);\left(1;1\right)\)

 

27 tháng 3 2019

Câu hỏi của nganhd - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo nhé! 

10 tháng 3 2022

-Lú thiệt sự.... :))

10 tháng 3 2022

-Lú thiệt sự.... :))