Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời
Cậu xem tại link:
Câu hỏi của nguyễn nam dũng - Toán lớp 6 - Học toán với OnlineMath
~Hok tốt~
Gọi số hàng chục là a
Số hàng đơn vị là b
Số cần tìm là 10.a+b
tổng các chữ số là a+b
theo giả thiêt 10a+b chia a+b được 2 dư 7
10a+b là số bị chia
a+b là số chia
Vậy 10a+b = 2(a+b) +7
Kèm theo điều kiện
a là số tự nhiên có 1 chữ sô từ 1 đến 9 (1)
b là số tự nhiên có 1 chữ sô từ 0 đến 9 (2)
a+b >7 điều kiện số chia lớn hơn số dư (3)
Từ 10a+b = 2(a+b) +7
=> 10a+b = 2a+2b +7
=> 8a = 7+b
=> a = (7+b) : 8
Vì a là số tự nhiên nên 7+b phải chia hết cho 8
7+b có thể nhận các giá trị 8 , 16, 24, 32 ,40 v..v
Nếu
----7+b =8
=> b=1
a=1 Loại vì a+b=2 <7 Vi phạm điều (3)
----7+b = 16
==> b= 9
a= 2 Thỏa mãn toàn bộ điều kiện .Số cần tìm là 10x2+9 =29
----7+b = 24
=> b= 17
a= 3 Loại vì b có 2 chữ số theo điều kiện (2 )
Không xét b+7 = 32, 40,48 v..v nữa vì b+7 càng to thì b càng có 2 chữ số hoặc hơn
ĐS: 29
add và k mk nha bn
Giải:
Ta biết: \(\dfrac{11}{17}< \dfrac{a}{b}< \dfrac{23}{29}\) và \(8b-9a=31\) \(\left(a;b\in N\right)\)
Theo đề bài: \(8b-9a=31\)
\(\Rightarrow b=\dfrac{31+9a}{8}=\dfrac{32-1+8a+a}{8}=\left[\left(4+a\right)+\dfrac{a-1}{8}\right]\in N\)
\(\Leftrightarrow\dfrac{a-1}{8}\in N\)
\(\Leftrightarrow\left(a-1\right)⋮8\)
\(\Leftrightarrow a=8k+1\left(k\in N\right)\)
Khi đó:
\(b=\dfrac{31+9.\left(8k+1\right)}{8}=9k+5\)
\(\Rightarrow\dfrac{11}{17}< \dfrac{8k+1}{9k+5}< \dfrac{23}{29}\)
\(\Leftrightarrow\left\{{}\begin{matrix}11.\left(9k+5\right)< 17.\left(8k+1\right)\Leftrightarrow k>1\\29.\left(8k+1\right)< 23.\left(9k+5\right)\Leftrightarrow k< 4\end{matrix}\right.\)
\(\Rightarrow1< k< 4\)
\(\Rightarrow k\in\left\{2;3\right\}\)
Với \(\left[{}\begin{matrix}k=2\Rightarrow\left\{{}\begin{matrix}a=17\\b=23\end{matrix}\right.\\k=3\Rightarrow\left\{{}\begin{matrix}a=25\\b=32\end{matrix}\right.\end{matrix}\right.\)
Vậy \(\left(a;b\right)=\left(17;23\right);\left(25;32\right)\)
Do 2n+12n+1 là số chính phương lẻ nên 2n+12n+1 chia 88 dư 11,vậy nn là số chẵn.
Vì 3n+13n+1 là số chính phương lẻ nên 3n+13n+1 chia 88 dư 11
⟹3n⋮8⟹3n⋮8
⟺n⋮8(1)⟺n⋮8(1)
Do 2n+12n+1 và 3n+13n+1 đều là số chính phương lẻ có tận cùng là 1;5;91;5;9.do đó khi chia cho 55 thì có số dư là 1;0;41;0;4
Mà (2n+1)+(3n+1)=5n+2(2n+1)+(3n+1)=5n+2 ,do đo 2n+12n+1 và 3n+13n+1 khi cho cho 55 đều dư 11
⟹n⋮5(2)⟹n⋮5(2)
Từ (1) và (2)⟹n⋮40⟹n⋮40
Vậy n=40kn=40k thì ...
mình lớp 5 mong bạn tích