Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(20x+10y=2010\)
\(\Leftrightarrow2x+y=201\)( chia cả 2 vế cho 10)
\(\Leftrightarrow x=\frac{201-y}{2}\)
Do đó, để x nguyên thì 201-y=2k \(\left(k\in Z\right)\)
\(\Leftrightarrow y=201-2k\)
\(\Rightarrow x=\frac{201-201+2k}{2}=k\)
Vậy các cặp số nguyên x,y thỏa mãn phương trình có dạng \(\left(x;y\right)=\left(k;201-k\right)\)với \(k\in Z\)
\(\text{10.(2x+y)=2010}\)
\(\text{2x+y=201}\)
\(\text{ y le}\)
Ta có 20x + 10y = 2010
=> 2x+y = 201
Ta có 201 là số lẻ, 2x là số chẵn
=> y là số lẻ => y có dạng 2k+1
=> x = 100-k (k là số nguyên)
Giải:
\(20x+10y=2010\)
⇔\(2x+y=201\)
\(2x\) là số chẵn \(;\) \(201\) là số lẻ ➩ \(y\) là số lẻ . Đặt \(y\) \(2k+1\)
➩\(2x+2k+1=201\)
⇔\(x=\dfrac{201-2k-1}{2}=100-k\)
Vậy \((x;y)=(100-k;2k+1)+k\) ∈ \(z\) (có ∞ ngiệm)
Ta có xy - 2x + y = 1
x( y - 2 ) + ( y - 2 ) = -1
( x + 1 )( y - 2 ) = -1
Vì x; y nguyên nên x + 1; y - 2 nguyên
Vậy x + 1; y - 2 ϵ Ư( -1 ) = { 1; -1 }
Nếu \(\left\{{}\begin{matrix}x+1=1\Rightarrow x=0\\y-2=-1\Rightarrow y=1\end{matrix}\right.\)
Nếu \(\left\{{}\begin{matrix}x+1=-1\Rightarrow x=-2\\y-2=1\Rightarrow y=3\end{matrix}\right.\)
Vậy cặp số nguyên ( x; y ) cần tìm là ( 0; 1 ) ; ( -2; 3 )