Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2-y^2\right)^2=4xy+1\)
<=> \(\left(x^2+y^2\right)^2=4x^2y^2+4xy+1\)
<=> \(\left(x^2+y^2\right)^2=\left(2xy+1\right)^2\)
<=> \(x^2+y^2=2xy+1\)
<=> \(\left(x-y\right)^2=1\)
<=> \(\left[{}\begin{matrix}x=y+1\\x=y-1\end{matrix}\right.\) mà x,y là SNT <=> \(\left[{}\begin{matrix}\left(x;y\right)=\left(3;2\right)\\\left(x;y\right)=\left(2;3\right)\end{matrix}\right.\)
x^2-1=2y^2
<=>(x-1)(x+1)=2y^2=y.2y
+)x-1=2=>x=3
X+1=y^2=>y^2=4=>y=2
+)x-1=y=>x=y+1
X+1=2y=>y+1+1=2y=>y=2
=>x=2+1=3
Vậy (x,y)=(3;2)
x2-12y2=1 <=> (x-1)(x+1)=12y2=>x-1 thuộc các giá trị 1,2,3,4,6,12,y,y2
kết quả : ko có giá trị tm
Ta có \(x^2=6y^2+1\) là số lẻ nên đặt \(x=2k+1\left(k\in N\right)\), ta có:
\(\left(2k+1\right)^2=6y^2+1\Rightarrow4k^2+4k+1=6y^2+1\Rightarrow4k^2+4k=6y^2\)
\(\Rightarrow2k\left(k+1\right)=3y^2\Rightarrow3y^2⋮2\Rightarrow y⋮2\Rightarrow y=2\) (vì y là số nguyên tố)
Thay y=2 vào đẳng thức ban đầu ta được: \(x^2=6.2^2+1=25\Rightarrow x=5\)
Vậy \(\left(x;y\right)=\left(5;2\right)\)
x = 5; y = 2