K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2017

Ta có \(x^2=6y^2+1\) là số lẻ nên đặt \(x=2k+1\left(k\in N\right)\), ta có:

\(\left(2k+1\right)^2=6y^2+1\Rightarrow4k^2+4k+1=6y^2+1\Rightarrow4k^2+4k=6y^2\)

\(\Rightarrow2k\left(k+1\right)=3y^2\Rightarrow3y^2⋮2\Rightarrow y⋮2\Rightarrow y=2\) (vì y là số nguyên tố)

Thay y=2 vào đẳng thức ban đầu ta được: \(x^2=6.2^2+1=25\Rightarrow x=5\)

Vậy \(\left(x;y\right)=\left(5;2\right)\)

16 tháng 7 2017

x = 5; y = 2

10 tháng 12 2021

Tham khảo:

Nhưng có vẻ không đúng yêu cầu đề lắm :<

undefined

undefined

undefined

10 tháng 12 2021

\(\left(x^2-y^2\right)^2=4xy+1\)

<=> \(\left(x^2+y^2\right)^2=4x^2y^2+4xy+1\)

<=> \(\left(x^2+y^2\right)^2=\left(2xy+1\right)^2\)

<=> \(x^2+y^2=2xy+1\)

<=> \(\left(x-y\right)^2=1\)

<=> \(\left[{}\begin{matrix}x=y+1\\x=y-1\end{matrix}\right.\) mà x,y là SNT <=> \(\left[{}\begin{matrix}\left(x;y\right)=\left(3;2\right)\\\left(x;y\right)=\left(2;3\right)\end{matrix}\right.\)

15 tháng 3 2023

wdwwđwdsswsw

12 tháng 1 2016

x^2-1=2y^2

<=>(x-1)(x+1)=2y^2=y.2y

+)x-1=2=>x=3

X+1=y^2=>y^2=4=>y=2

+)x-1=y=>x=y+1

X+1=2y=>y+1+1=2y=>y=2

=>x=2+1=3

 Vậy (x,y)=(3;2)

12 tháng 1 2016

x2-12y2=1 <=> (x-1)(x+1)=12y2=>x-1 thuộc các giá trị 1,2,3,4,6,12,y,y2

kết quả : ko có giá trị tm