Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt n+6=a2 n+1=b2 (a,b dương a>b)
=> \(a^2-b^2=5\)=> \(\left(a+b\right)\left(a-b\right)=5\)=> \(\hept{\begin{cases}a+b=5\\a-b=1\end{cases}}\)=> \(\hept{\begin{cases}a=3\\b=2\end{cases}}\)=>\(n=3^2-6=2^2-1=3\)
Mình làm đại đó,ahihi :v
Đặt n-2= a^3; n-5=b^3 (a,b thuộc Z)
Ta có
\(a^3-b^3=\left(n-2\right)-\left(n-5\right)\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2\right)=3\)
Ta thấy \(a^2+ab+b^2\ge0\)nên
TA CÓ BẢNG :
a-b | a2+ab+b2 | a | b | |
---|---|---|---|---|
1 | 3 | |||
3 | 1 | |||
Có \(A=n^2\left(n^2+n+1\right)\)
Để A là scp \(\Leftrightarrow n^2+n+1\) là scp
Đặt \(a^2=n^2+n+1\) (\(a\in Z\))
\(\Leftrightarrow4a^2=4n^2+4n+4\)
\(\Leftrightarrow4a^2=\left(2n+1\right)^2+3\)
\(\Leftrightarrow\left(2a-2n-1\right)\left(2a+2n+1\right)=3\)
Do \(a,n\in Z\Rightarrow2a-2n-1;2a+2n+1\) \(\in Z\)
\(\Rightarrow\left\{{}\begin{matrix}2a-2n-1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\2a+2n+1\inƯ\left(3\right)\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}2a-2n-1=-3\\2a+2n+1=-1\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}4a=-4\\2a+2n+1=-1\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}a=-1\\n=0\end{matrix}\right.\) (tm)
TH2:\(\left\{{}\begin{matrix}2a-2n-1=-1\\2a+2n+1=-3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}4a=-4\\2a+2n+1=-3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=-1\\n=-1\end{matrix}\right.\) (tm)
TH3:\(\left\{{}\begin{matrix}2a-2n-1=1\\2a+2n+1=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}4a=4\\2a+2n+1=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\n=0\end{matrix}\right.\) (tm)
TH4:\(\left\{{}\begin{matrix}2a-2n-1=3\\2a+2n+1=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}4a=4\\2a+2n+1=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\n=-1\end{matrix}\right.\) (tm)
Vậy n=0 và n=-1 thì A là scp
n+1930, n+2539 là số chính phương
Khi đó sẽ tồn tại số nguyên a, b sao cho:
\(n+1930=a^2,n+2539=b^2\)
Ta có: \(b^2-a^2=\left(n+2539\right)-\left(n+1930\right)=609\)
=> \(\left(b-a\right)\left(b+a\right)=1.609=609.1=-1.\left(-609\right)=\left(-609\right).\left(-1\right)\)
\(=3.203=203.3=-3.\left(-203\right)=\left(-203\right).\left(-3\right)\)
Vì a, b nguyên nên a-b và a+b nguyên
Em kẻ bảng làm tiếp nhé