K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2017

2x + 3y + 5z = 136

=> 5z < 136

=> z < 4

z nguyên dương nên \(z\in\left\{1;2;3\right\}\)

+) z = 1, thay vào đề ta được: 2x + 3y + 5 = 136

=> 2x + 3y = 131

=> 3y < 131 => y < 5

y nguyên dương nên \(y\in\left\{1;2;3;4\right\}\)

sau khi thử ta thấy y = 1; x = 7 thỏa mãn

các trường hợp còn lại tương tự

16 tháng 4 2016

làm đc thì giỏi. Ko làm đc cũng chả sao cả. Biết làm rồi

giải ra cho mk tham khảo đi được ko?????? mk ko bít

5447564

11 tháng 12 2021

\(2x=3y-2x\Leftrightarrow4x=3y\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4}\\ 3y-2x=5z\Leftrightarrow4x-2x=5z\Leftrightarrow2x=5z\Leftrightarrow\dfrac{x}{5}=\dfrac{z}{2}\\ \Leftrightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{6}=\dfrac{x-y+z}{15-20+6}=\dfrac{99}{1}=99\\ \Leftrightarrow\left\{{}\begin{matrix}x=1485\\y=1980\\z=594\end{matrix}\right.\)

11 tháng 12 2021

Answer:

Đề ra:

\(2x=3y-2x=5z\)

\(\Rightarrow2x+2x=3y=5z\)

\(\Rightarrow4x=3y=5z\)

\(4x=3y\Rightarrow\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\)

\(3y=5z\Rightarrow\frac{y}{5}=\frac{z}{3}\Rightarrow\frac{y}{20}=\frac{z}{12}\)

Áp dụng tính chất của dãy tỉ số bằng nhau

\(\frac{x}{15}=\frac{y}{20}=\frac{z}{12}=\frac{x-y+z}{15-20+12}=\frac{90}{7}\)

\(\Rightarrow\frac{x}{15}=\frac{99}{7}\Rightarrow x=\frac{1485}{7}\)

\(\Rightarrow\frac{y}{20}=\frac{99}{7}\Rightarrow y=\frac{1980}{7}\)

\(\Rightarrow\frac{z}{12}=\frac{99}{7}\Rightarrow z=\frac{1188}{7}\)

21 tháng 10 2020

a) Vì \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\)

        \(3y=7z\Rightarrow\frac{y}{7}=\frac{z}{3}\Rightarrow\frac{y}{14}=\frac{z}{6}\)

\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{6}\) và x+y-z=58

APa dụng TC dãy TSBN ta có

\(\frac{x}{21}=\frac{y}{14}=\frac{z}{6}=\frac{x+y-z}{21+14-6}=\frac{58}{29}=2\)

\(\Rightarrow x=42;y=28;z=12\)

Các câu còn lại tương tự

26 tháng 10 2018

bạn giải đi bạn

27 tháng 10 2018

Theo đề ta có: \(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)

Đặt: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\left(k\inℕ^∗\right)\)

Suy ra: \(x=3k;y=4k;z=5k\) Thay vào biểu thức P ta có:

\(P=\frac{3k+8k+15k}{6k+12k+20k}+\frac{6k+12k+20k}{9k+16k+25k}+\frac{9k+16k+25k}{12k+20k+30k}\)

\(P=\frac{26k}{38k}+\frac{38k}{50k}+\frac{50k}{62k}=\frac{13}{19}+\frac{19}{25}+\frac{25}{31}=\frac{33141}{14725}\)

9 tháng 10 2018

Giả sử (x;y) là cặp số nguyên dương cần tìm. Khi đó ta có: 
(xy-1) I (x^3+x) => (xy-1) I x.(x^2+1) (1) 
Do (x; xy-1) =1 ( Thật vậy: gọi (x;xy-1) =d => d I x => d I xy => d I 1). 
Nên từ (1) ta có: 
(xy-1) I (x^2+1) 
=> (xy-1) I (x^2+1+xy -1) => (xy-1) I (x^2+xy) => (xy-1) I x.(x+y) => (xy-1) I (x+y) 
Điều đó có nghĩa là tồn tại z ∈ N* sao cho: 
x+y = z(xy-1) <=> x+y+z =xyz (2) 

[Đây lại có vẻ là 1 bài toán khác] 
Do vai trò bình đẳng nên ta giả sử: x ≥ y ≥ z. 
Từ (2) ta có: x+y+z ≤ 3x => 3x ≥ xyz => 3 ≥ yz ≥ z^2 => z=1 
=> 3 ≥ y => y ∈ {1;2;3} 
Nếu y=1: x+2 =x (loại) 
Nếu y=2: (2) trở thành x+3 =2x => x=3 
Nếu y=3: x+4 = 3x => x=2 (loại vì ta có x≥y) 
Vậy khi x ≥ y ≥ z thì (2) có 1 nghiệm (x;y;z) là (3;2;1) 
Hoán vị vòng quanh được 6 nghiệm là: .....[bạn tự viết nhé] 

Vậy bài toán đã cho có 6 nghiệm (x;y) là : .... [viết y chang nhưng bỏ z đi]

9 tháng 10 2018

 Giả sử (x;y) là cặp số nguyên dương cần tìm. Khi đó ta có: 
(xy-1) I (x^3+x) => (xy-1) I x.(x^2+1) (1) 
Do (x; xy-1) =1 ( Thật vậy: gọi (x;xy-1) =d => d I x => d I xy => d I 1).
Nên từ (1) ta có: 
(xy-1) I (x^2+1) 
=> (xy-1) I (x^2+1+xy -1) => (xy-1) I (x^2+xy) => (xy-1) I x.(x+y) => (xy-1) I (x+y) 
Điều đó có nghĩa là tồn tại z ∈ N* sao cho: 
x+y = z(xy-1) <=> x+y+z =xyz (2) 

[Đây lại có vẻ là 1 bài toán khác] 
Do vai trò bình đẳng nên ta giả sử: x ≥ y ≥ z. 
Từ (2) ta có: x+y+z ≤ 3x => 3x ≥ xyz => 3 ≥ yz ≥ z^2 => z=1 
=> 3 ≥ y => y ∈ {1;2;3} 
Nếu y=1: x+2 =x (loại) 
Nếu y=2: (2) trở thành x+3 =2x => x=3 
Nếu y=3: x+4 = 3x => x=2 (loại vì ta có x≥y) 
Vậy khi x ≥ y ≥ z thì (2) có 1 nghiệm (x;y;z) là (3;2;1) 
Hoán vị vòng quanh được 6 nghiệm là: .....[bạn tự viết nhé] 

Vậy bài toán đã cho có 6 nghiệm (x;y) là : .... [viết y chang nhưng bỏ z đi]

DD
15 tháng 1 2022

\(2xy+6x-3y-22=0\)

\(\Leftrightarrow2x\left(y+3\right)-3y-9=13\)

\(\Leftrightarrow\left(2x-3\right)\left(y+3\right)=13\)

Vì \(x,y\)là các số nguyên nên \(2x-3,y+3\)là các ước của \(13\).

Ta có bảng giá trị: 

2x-3-13-1113
y+3-1-13131
x-5128
y-4-1610-2