Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giải ra cho mk tham khảo đi được ko?????? mk ko bít
5447564
\(2x=3y-2x\Leftrightarrow4x=3y\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4}\\ 3y-2x=5z\Leftrightarrow4x-2x=5z\Leftrightarrow2x=5z\Leftrightarrow\dfrac{x}{5}=\dfrac{z}{2}\\ \Leftrightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{6}=\dfrac{x-y+z}{15-20+6}=\dfrac{99}{1}=99\\ \Leftrightarrow\left\{{}\begin{matrix}x=1485\\y=1980\\z=594\end{matrix}\right.\)
Answer:
Đề ra:
\(2x=3y-2x=5z\)
\(\Rightarrow2x+2x=3y=5z\)
\(\Rightarrow4x=3y=5z\)
\(4x=3y\Rightarrow\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\)
\(3y=5z\Rightarrow\frac{y}{5}=\frac{z}{3}\Rightarrow\frac{y}{20}=\frac{z}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{12}=\frac{x-y+z}{15-20+12}=\frac{90}{7}\)
\(\Rightarrow\frac{x}{15}=\frac{99}{7}\Rightarrow x=\frac{1485}{7}\)
\(\Rightarrow\frac{y}{20}=\frac{99}{7}\Rightarrow y=\frac{1980}{7}\)
\(\Rightarrow\frac{z}{12}=\frac{99}{7}\Rightarrow z=\frac{1188}{7}\)
a) Vì \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\)
\(3y=7z\Rightarrow\frac{y}{7}=\frac{z}{3}\Rightarrow\frac{y}{14}=\frac{z}{6}\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{6}\) và x+y-z=58
APa dụng TC dãy TSBN ta có
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{6}=\frac{x+y-z}{21+14-6}=\frac{58}{29}=2\)
\(\Rightarrow x=42;y=28;z=12\)
Các câu còn lại tương tự
Theo đề ta có: \(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Đặt: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\left(k\inℕ^∗\right)\)
Suy ra: \(x=3k;y=4k;z=5k\) Thay vào biểu thức P ta có:
\(P=\frac{3k+8k+15k}{6k+12k+20k}+\frac{6k+12k+20k}{9k+16k+25k}+\frac{9k+16k+25k}{12k+20k+30k}\)
\(P=\frac{26k}{38k}+\frac{38k}{50k}+\frac{50k}{62k}=\frac{13}{19}+\frac{19}{25}+\frac{25}{31}=\frac{33141}{14725}\)
Giả sử (x;y) là cặp số nguyên dương cần tìm. Khi đó ta có:
(xy-1) I (x^3+x) => (xy-1) I x.(x^2+1) (1)
Do (x; xy-1) =1 ( Thật vậy: gọi (x;xy-1) =d => d I x => d I xy => d I 1).
Nên từ (1) ta có:
(xy-1) I (x^2+1)
=> (xy-1) I (x^2+1+xy -1) => (xy-1) I (x^2+xy) => (xy-1) I x.(x+y) => (xy-1) I (x+y)
Điều đó có nghĩa là tồn tại z ∈ N* sao cho:
x+y = z(xy-1) <=> x+y+z =xyz (2)
[Đây lại có vẻ là 1 bài toán khác]
Do vai trò bình đẳng nên ta giả sử: x ≥ y ≥ z.
Từ (2) ta có: x+y+z ≤ 3x => 3x ≥ xyz => 3 ≥ yz ≥ z^2 => z=1
=> 3 ≥ y => y ∈ {1;2;3}
Nếu y=1: x+2 =x (loại)
Nếu y=2: (2) trở thành x+3 =2x => x=3
Nếu y=3: x+4 = 3x => x=2 (loại vì ta có x≥y)
Vậy khi x ≥ y ≥ z thì (2) có 1 nghiệm (x;y;z) là (3;2;1)
Hoán vị vòng quanh được 6 nghiệm là: .....[bạn tự viết nhé]
Vậy bài toán đã cho có 6 nghiệm (x;y) là : .... [viết y chang nhưng bỏ z đi]
Giả sử (x;y) là cặp số nguyên dương cần tìm. Khi đó ta có:
(xy-1) I (x^3+x) => (xy-1) I x.(x^2+1) (1)
Do (x; xy-1) =1 ( Thật vậy: gọi (x;xy-1) =d => d I x => d I xy => d I 1).
Nên từ (1) ta có:
(xy-1) I (x^2+1)
=> (xy-1) I (x^2+1+xy -1) => (xy-1) I (x^2+xy) => (xy-1) I x.(x+y) => (xy-1) I (x+y)
Điều đó có nghĩa là tồn tại z ∈ N* sao cho:
x+y = z(xy-1) <=> x+y+z =xyz (2)
[Đây lại có vẻ là 1 bài toán khác]
Do vai trò bình đẳng nên ta giả sử: x ≥ y ≥ z.
Từ (2) ta có: x+y+z ≤ 3x => 3x ≥ xyz => 3 ≥ yz ≥ z^2 => z=1
=> 3 ≥ y => y ∈ {1;2;3}
Nếu y=1: x+2 =x (loại)
Nếu y=2: (2) trở thành x+3 =2x => x=3
Nếu y=3: x+4 = 3x => x=2 (loại vì ta có x≥y)
Vậy khi x ≥ y ≥ z thì (2) có 1 nghiệm (x;y;z) là (3;2;1)
Hoán vị vòng quanh được 6 nghiệm là: .....[bạn tự viết nhé]
Vậy bài toán đã cho có 6 nghiệm (x;y) là : .... [viết y chang nhưng bỏ z đi]
\(2xy+6x-3y-22=0\)
\(\Leftrightarrow2x\left(y+3\right)-3y-9=13\)
\(\Leftrightarrow\left(2x-3\right)\left(y+3\right)=13\)
Vì \(x,y\)là các số nguyên nên \(2x-3,y+3\)là các ước của \(13\).
Ta có bảng giá trị:
2x-3 | -13 | -1 | 1 | 13 |
y+3 | -1 | -13 | 13 | 1 |
x | -5 | 1 | 2 | 8 |
y | -4 | -16 | 10 | -2 |
2x + 3y + 5z = 136
=> 5z < 136
=> z < 4
z nguyên dương nên \(z\in\left\{1;2;3\right\}\)
+) z = 1, thay vào đề ta được: 2x + 3y + 5 = 136
=> 2x + 3y = 131
=> 3y < 131 => y < 5
y nguyên dương nên \(y\in\left\{1;2;3;4\right\}\)
sau khi thử ta thấy y = 1; x = 7 thỏa mãn
các trường hợp còn lại tương tự