Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Để B nhận giá trị nguyên thì n - 3 phải là ước của 5
=> n - 3 ∈ {-1; 1; -5; 5} => n ∈ { -2 ; 2; 4; 8}
Đối chiếu đ/k ta được n ∈ {- 2; 2; 4; 8}
b. Với x = 2, ta có: 22 + 117 = y2 → y2 = 121 → y = 11 (là số nguyên tố)
* Với x > 2, mà x là số nguyên tố nên x lẻ y2 = x2 + 117 là số chẵn
=> y là số chẵn
kết hợp với y là số nguyên tố nên y = 2 (loại)
Vậy x = 2; y = 11.
c. Ta có: 1030= 100010 và 2100 =102410. Suy ra: 1030 < 2100 (1)
Lại có: 2100= 231.263.26 = 231.5127.64 và 1031=231.528.53=231.6257.125
Nên: 2100< 1031 (2). Từ (1) và(2) suy ra số 2100 viết trong hệ thập phân có 31 chữ số.
a)Để B thuộc Z
=>5 chia hết n-3
=>n-3 thuộc Ư(5)={1;-1;5;-5}
=>n thuộc {4;2;8;-2}
3x3+10x2-5 chia hết cho 3x-1
<=> 3x3-3x3-x2+10x2-5 chia hết cho 3x+1
<=> 9x2-5 chia hết cho 3x+1
<=> 9x2-(9x2+3x)-5 chia hết cho 3x+1
<=> 3x-5 chia hết cho 3x+1
<=> 6 chia hết cho 3x+1 <=> 3x+1 E Ư(6)
Vì 3x+1 chia 3 dư 1
<=> 3x+1 E {1;-2}
<=> 3x E {0;-3} <=> x E {0;-1}
1. Ta có \(\left(b-a\right)\left(b+a\right)=p^2\)
Mà b+a>b-a ; p là số nguyên tố
=> \(\hept{\begin{cases}b+a=p^2\\b-a=1\end{cases}}\)
=> \(\hept{\begin{cases}b=\frac{p^2+1}{2}\\a=\frac{p^2-1}{2}\end{cases}}\)
Nhận xét :+Số chính phương chia 8 luôn dư 0 hoặc 1 hoặc 4
Mà p là số nguyên tố
=> \(p^2\)chia 8 dư 1
=> \(\frac{p^2-1}{2}⋮4\)=> \(a⋮4\)(1)
+Số chính phương chia 3 luôn dư 0 hoặc 1
Mà p là số nguyên tố lớn hơn 3
=> \(p^2\)chia 3 dư 1
=> \(\frac{p^2-1}{2}⋮3\)=> \(a⋮3\)(2)
Từ (1);(2)=> \(a⋮12\)
Ta có \(2\left(p+a+1\right)=2\left(p+\frac{p^2-1}{2}+1\right)=p^2+1+2p=\left(p+1\right)^2\)là số chính phương(ĐPCM)
1. Nếu m = 0 => -x-2=0 => x = -2 là nghiệm hữu tỉ (nhận)
2. Nếu \(m\ne0\) , xét \(\Delta=\left(1-2m\right)^2-4.m.\left(m-2\right)=4m+1\)
Để pt có nghiệm hữu tỉ thì \(\Delta\) phải là một số chính phương lẻ , đặt \(\Delta=\left(2k+1\right)^2\) (k thuộc N)
Suy ra \(4k^2+4k+1=4m+1\Leftrightarrow m=k^2+k=k\left(k+1\right)\)
Vậy m = k(k+1) với k là số tự nhiên thì pt có nghiệm hữu tỉ.
ukm......................
Khó quá mik ko nghĩ ra