K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2018

Ta có: \(\frac{5x+1}{x+1}=\frac{5x+5-4}{x+1}\)

\(=\frac{5\left(x+1\right)-4}{x+1}\)

\(=\frac{5\left(x+1\right)}{x+1}-\frac{4}{x+1}\)

\(=5-\frac{4}{x+1}\)

Vì 5 là số nguyên

=> Để 5x+1/x+1 là số nguyên thì 4/x+1 phải là số nguyên

=> 4 chia hết cho x + 1

=> x + 1 thuộc Ư(4)

=> x + 1 thuộc { 1;-1;2;-2;4;-4 }

=> x thuộc { 2;0;3;-1;5;-3 }

23 tháng 4 2018

Gọi số đó là A

\(\frac{5x+1}{x+1}=\frac{4x+x+1}{x+1}\)=\(\frac{4x+4-4+x+1}{x+1}=\frac{\left(x+1\right)+\left(x+1\right)+\left(x+1\right)+\left(x+1\right)-4+\left(x+1\right)}{x+1}\)

Vậy để A là sô nguyên thì 4 phải chia hết x+1 và x+1 thuộc ước của 4

Ư(4)={+4;+1;+2)

x+1=+1;+2;+4

Vay x=0;2;3;-1;6;-2.

 TUi ko biết số hửu tỉ nên chỉ cần ghép thêm vài sô thuộc ước của 4 và la sô hửu tỉ là được

25 tháng 5 2016

Ta có: \(\frac{x+1}{x}=\frac{x}{x}+\frac{1}{x}=1+\frac{1}{x}\)

Để x+1/x nguyên thì 1/x nguyên 

=>  x \(\in\){-1;1} 

25 tháng 5 2016

ta có : \(\frac{x+1}{x}=\frac{x}{x}+\frac{1}{x}=1+\frac{1}{x}\)

để x + 1/x nguyên thì 1/x nguyên

=> x \(\in\){-1;1}

27 tháng 2 2018

Để \(\frac{5}{2x^2+1}\) là số nguyên thì \(5⋮\left(2x^2+1\right)\) \(\Rightarrow\) \(\left(2x^2+1\right)\inƯ\left(5\right)\)

Mà \(Ư\left(5\right)\left\{1;-1;5;-5\right\}\)

Suy ra : 

\(2x^2+1\)\(1\)\(-1\)\(5\)\(-5\)
\(x\)\(0\)\(\varnothing\)\(\sqrt{2}\)\(\varnothing\)

Vì \(x\inℚ\) ( x là số hữu tỉ ) nên \(x=0\)

Vậy \(x=0\)

31 tháng 8 2021

Để \(\dfrac{2}{x}\) là số nguyên thì \(x\in\left\{-1;1;-2;2\right\}\)

Mà x>0 nên \(x\in\left\{1,2\right\}\)

 

31 tháng 8 2021

Bạn ơi đây là số hữu tỉ chứ ko phair là số nguyên