Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2(x + 3) = 5(1 - x) - 2
<=> 2x + 6 = 5 - 5x - 2
<=> 2x + 6 = 3 - 5x
=> 2x - 5x = 6 + 3
=> -3x = 9
=> x = 9 : (-3)
=> x = -3
a) Ta có : \(n+3⋮n+2\)
\(\Rightarrow\left(n+2\right)+1⋮n+2\)
Mà \(n+2⋮n+2\)
\(\Rightarrow1⋮n+2\)
\(\Rightarrow n+2\inƯ_{\left(1\right)}=\left\{\pm1\right\}\)
Ta có bảng sau :
n+2 | 1 | -1 |
n | -1 | -3 |
Mà \(n\in N\)\(\Rightarrow\)ko có giá trị nào của n có thể thỏa mãn đk trên :)
b) \(2n+9⋮n-3\)
\(\Rightarrow2\left(n-3\right)+15⋮n-3\)
Mà \(2\left(n-3\right)⋮n-3\)
\(\Rightarrow15⋮n-3\)
\(\Rightarrow n-3\inƯ_{\left(15\right)}=\left\{\pm1;\pm3;\pm5;\pm15\right\}\)
Lại có : \(n\in N\)
Ta có bảng sau :
n-3 | 1 | -1 | 3 | -3 | 5 | -5 | 15 | -15 |
n | 4 (tm) | 2 (tm) | 6 (tm) | 0 (tm) | 8 (tm) | -2 (loại) | 18 (tm) | -12 ( loại ) |
Vậy \(n\in\left\{4;2;6;0;8;18\right\}\)
n+1 chia hết cho n-4
=> n-4+5 chia hết cho n-4
=> n-4 chia hết cho n-4 ; 5 chia hết cho n-4
=> n-4 thuộc Ư(5)={1,5}
n-4=1 => n=5
n-5=5 => n=10
Vậy b={5,10}
n + 1 \(⋮\)n - 4
=> n - 4 + 5 \(⋮\)n - 4 mà n - 4 \(⋮\)n - 4 => 5 \(⋮\)n - 4
=> n - 4 \(\in\)Ư ( 5 ) = { 1 ; 5 }
=> n \(\in\){ 5 ; 9 }
Vậy n \(\in\){ 5 ; 9 }
\(n^2+4⋮n-1\)
Mà \(n-1⋮n-1\)
\(\Leftrightarrow\hept{\begin{cases}n^2+4⋮n-1\\n^2-n⋮n-1\end{cases}}\)
\(\Leftrightarrow n+4⋮n-1\)
Mà \(n-1⋮n-1\)
\(\Leftrightarrow5⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(5\right)\)
\(\Leftrightarrow\orbr{\begin{cases}n-1=1\\n-1=5\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}n=0\\n=6\end{cases}}\)
Vì số đó chia hết cho 99=> nó chia hết cho 9 và 11
Số đó có tổng chữ số là:6+2+x+y+4+2+7=21+x+y => B chia hết cho 9.
mà x+y<19
=>x+y thuộc{6;15}
Vì số đó chia hết cho 11 nên tổng chữ số hàng lẻ -tổng chữ số hàng chẵn chia hết cho 11
=>[6+x+4+7]-[2+y+2] chia hết cho 11
=> [17+x]-[4+y] chia hêt cho 11
13+x-y sẽ chia hết cho 11
13+[x-y] sẽ chia hết cho 11
=> x-y chỉ có thể là 9 hoặc -2 .
Nếu x-y=9=> x=9; y=0 ( không tm)
Vậy x-y=-2 kết hợp với x+y=6 hoặc 15 ta loại đi trường hợp 15
vậy x+y=6
=>x=2;y=4
Ta thấy
\(a+b-1>b+c-1\)
(=) \(a-c>b-1-b+1\)
(=)\(a-c>0\)
=> a - c bằng 1 số dương