K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 4 2022

Đặt \(-x^2+2x=t\Rightarrow0\le t\le1\)

\(\Rightarrow-t^2+t-3+m=0\)

\(\Leftrightarrow t^2-t+3=m\)

Xét hàm \(f\left(t\right)=t^2-t+3\) trên \(\left[0;1\right]\)

\(-\dfrac{b}{2a}=\dfrac{1}{2}\in\left[0;1\right]\)

\(f\left(0\right)=3\) ; \(f\left(1\right)=3\) ; \(f\left(\dfrac{1}{2}\right)=\dfrac{11}{4}\)

\(\Rightarrow\dfrac{11}{4}\le f\left(t\right)\le3\)

\(\Rightarrow\) Pt có nghiệm khi và chỉ khi \(\dfrac{11}{4}\le m\le3\)

Câu 1: Tìm tất cả các giá trị cuả tham số m để phương trình \(4\sqrt{x^2-4x+5} =x^2-4x+2m-1\) có 4 nghiệm phân biệt Câu 2: Tìm các giá trị của tham số m sao cho tổng các bình phương hai nghiệm của phương trình \((m-3)x^2+2x-4=0\) bằng 4 Câu 3: Cho tam giác ABC có \(BC=a, AC=b, AB=c\) và I là tâm đường tròn nội tiếp tam giác. Chứng minh rằng: \(a\overrightarrow{IA}+b\overrightarrow{IB}+c\overrightarrow{IC}=\overrightarrow{0}\)  Câu 4: Cho tam...
Đọc tiếp

Câu 1: Tìm tất cả các giá trị cuả tham số m để phương trình \(4\sqrt{x^2-4x+5} =x^2-4x+2m-1\) có 4 nghiệm phân biệt

Câu 2: Tìm các giá trị của tham số m sao cho tổng các bình phương hai nghiệm của phương trình \((m-3)x^2+2x-4=0\) bằng 4

Câu 3: Cho tam giác ABC có \(BC=a, AC=b, AB=c\) và I là tâm đường tròn nội tiếp tam giác. Chứng minh rằng: \(a\overrightarrow{IA}+b\overrightarrow{IB}+c\overrightarrow{IC}=\overrightarrow{0}\) 

Câu 4: Cho tam giác ABC. Gọi D,I lần lượt là các điểm xác định bởi \(3\overrightarrow{BD}-\overrightarrow{BC}=\overrightarrow{0}\) và \(\overrightarrow{IA}+\overrightarrow{ID}=\overrightarrow{0}\). Gọi M là điểm thỏa mãn \(\overrightarrow{AM}=x\overrightarrow{AC}\) (x∈R)

a) Biểu thị \(\overrightarrow{BI}\) theo \(\overrightarrow{BA}\) và \(\overrightarrow{BC}\)

b) Tìm x để ba điểm B,I,M thẳng hàng

4
NV
14 tháng 12 2020

1.

Đặt \(\sqrt{x^2-4x+5}=t\ge1\Rightarrow x^2-4x=t^2-5\)

Pt trở thành:

\(4t=t^2-5+2m-1\)

\(\Leftrightarrow t^2-4t+2m-6=0\) (1)

Pt đã cho có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm pb đều lớn hơn 1

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=4-\left(2m-6\right)>0\\\left(t_1-1\right)\left(t_2-1\right)>0\\\dfrac{t_1+t_2}{2}>1\\\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}10-2m>0\\t_1t_2-\left(t_1+t_1\right)+1>0\\t_1+t_2>2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 5\\2m-6-4+1>0\\4>2\end{matrix}\right.\) \(\Leftrightarrow\dfrac{9}{2}< m< 5\)

NV
14 tháng 12 2020

2.

Để pt đã cho có 2 nghiệm:

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\\Delta'=1+4\left(m-3\right)\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\m\ge\dfrac{11}{4}\end{matrix}\right.\)

Khi đó:

\(x_1^2+x_2^2=4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)

\(\Leftrightarrow\dfrac{4}{\left(m-3\right)^2}+\dfrac{8}{m-3}=4\)

\(\Leftrightarrow\dfrac{1}{\left(m-3\right)^2}+\dfrac{2}{m-3}-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{m-3}=-1-\sqrt{2}\\\dfrac{1}{m-3}=-1+\sqrt{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=4-\sqrt{2}< \dfrac{11}{4}\left(loại\right)\\m=4+\sqrt{2}\end{matrix}\right.\)

5 tháng 2 2021

- Đặt \(a=x^2-2x\left(a\ge-1\right)\)

PTTT \(3\sqrt{a+3}=a+m\left(a\ge-m\right)\)

\(\Leftrightarrow9\left(a+3\right)=\left(a+m\right)^2=a^2+2am+m^2=9a+27\)

\(\Leftrightarrow a^2+a\left(2m-9\right)+m^2-27=0\)

Có : \(\Delta=\left(2m-9\right)^2-4\left(m^2-27\right)=4m^2-36m+81-4m^2+108\)

\(=-36m+189\)

- Để phương trình đề có 2 nghiệm phân biệt :

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\\left(a_1+1\right)\left(a_2+1\right)>0\\a_1+1+a_2+1>0\end{matrix}\right.\)

Lại có : Theo vi ét : \(\left\{{}\begin{matrix}a_1+a_2=-2m+9\\a_1a_2=m^2-27\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\Delta>0\\a_1a_2+a_1+a_2+1>0\\a_1+a_2+2>0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}-36m+189>0\\m^2-27-2m+9+1=m^2-2m-17>0\\-2m+9+2=-2m+11>0\end{matrix}\right.\)

\(\Rightarrow m=\left(-\infty;1-3\sqrt{2}\right)\cup\left(1+3\sqrt{2};\dfrac{21}{4}\right)\) ( * )

- Có : \(x^2-2x=a\)

- Đặt \(f\left(x\right)=x^2-2x\)

- Ta có đồ thị \(x^2-2x=0\)

- Từ độ thị hàm số : Để phương trình \(x^2-2x=a\) có 2 nghiệm phân biệt trong đoạn 0, 3 thì \(a=(-1;0]\)

Lại có : \(a=[-m;+\infty)\)

\(\Rightarrow-m\le0\)

\(\Rightarrow m\ge0\)

- Kết hợp với ( * )

\(\Rightarrow m\in\left(1+3\sqrt{2};\dfrac{21}{4}\right)\)

Vậy ...

24 tháng 11 2021

\(x-4\sqrt{x+3}+m=0\)

\(\Leftrightarrow x+3-4\sqrt{x+3}-3+m=0\left(1\right)\)

\(đăt:\sqrt{x+3}=t\left(t\ge0\right)\)

\(\left(1\right)\Leftrightarrow t^2-4t-3+m=0\Leftrightarrow f\left(t\right)=t^2-4t-3=-m\left(2\right)\)

\(\left(1\right)-có-2ngo-phân-biệt\Leftrightarrow\left(2\right)có-2ngo-phân-biệt-thỏa:t\ge0\)

\(\Rightarrow f\left(0\right)=-3\)

\(\Rightarrow f\left(t\right)min=\dfrac{-\Delta}{4a}=-7\Leftrightarrow t=2\)

\(\Rightarrow-7< -m\le-3\Leftrightarrow3\le m< 7\)

15 tháng 12 2021

\(t^2-4t-3+m=0\Leftrightarrow t^2-4t-3=-m\)

\(có-2nghiệm-pb-trên[0;\text{+∞})\)

\(xét-bảng-biến-thiên-củaf\left(t\right)=t^2-4t-3,trên[0;\text{+∞})\)

f(t) 0 2 +∞ -∞ -3 -7 -m -m t

dựa vào bảng biến thiên ta thấy số nghiệm của phương trình f(t)

là số giao điểm của đường thẳng y=-m 

\(\Rightarrow-7< -m\le-3\Leftrightarrow3\le m< 7\)

 

12 tháng 9 2017

Phương trình đã cho nghiệm đúng với  hay phương trình có vô số nghiệm khi

m 2 − 3 m + 2 = 0 − ( m 2 + 4 m + 5 ) = 0 ⇔ m = 1 m = 2 m ∈ ∅ ⇔ m ∈ ∅

Đáp án cần chọn là: D

27 tháng 5 2021

Đáp án của toi:https://hoc24.vn/cau-hoi/tim-tat-ca-cac-gia-tri-cua-tham-so-m-de-bat-phuong-trinh-sau-co-nosqrt2xsqrt4-x-sqrt82x-x2le-m.920223129881

Đáp án của một bạn khác: https://hoc24.vn/cau-hoi/tim-tat-ca-cac-gia-tri-cua-tham-so-m-de-bat-phuong-trinh-sau-co-nosqrt2xsqrt4-x-sqrt82x-x2le-m.616555176629

27 tháng 5 2021

2 đáp án khác nhau phải làm sao ạ :((

11 tháng 4 2021

ĐK: \(-2\le x\le4\)

Đặt \(\sqrt{2+x}+\sqrt{4-x}=t\left(\sqrt{6}\le t\le2\sqrt{3}\right)\)

\(\Rightarrow\sqrt{8+2x-x^2}=\dfrac{t^2-6}{2}\)

Bất phương trình tương đương:

\(t+\dfrac{t^2-6}{2}\le m\)

\(\Leftrightarrow f\left(t\right)=t^2+2t-6\le2m\)

Bất phương trình đã cho có nghiệm khi \(2m\ge minf\left(t\right)=f\left(\sqrt{6}\right)=2\sqrt{6}\)

\(\Leftrightarrow m\ge\sqrt{6}\)

Kết luận: \(m\ge\sqrt{6}\)

20 tháng 5 2021

Đặt \(t=\sqrt{2+x}+\sqrt{4-x}\)  (\(t\in\left[\sqrt{6};2\sqrt{3}\right]\) )      

\(\Leftrightarrow t^2=6+2\sqrt{8+2x-x^2}\)

\(\Leftrightarrow\dfrac{t^2-6}{2}=\sqrt{8+2x-x^2}\)

Khi đó ta cần tìm m để bpt \(t-\dfrac{t^2-6}{2}\le m\) có nghiệm \(t\in\left[\sqrt{6};2\sqrt{3}\right]\)

\(\Leftrightarrow-t^2+2t+6-2m\le0\) có nghiệm  \(t\in\left[\sqrt{6};2\sqrt{3}\right]\)

Đặt \(f\left(t\right)=-t^2+2t+6-2m\) , \(t\in\left[\sqrt{6};2\sqrt{3}\right]\)

BBT 

t-∞√62√31-∞f(t)f(1)2√6-2m-6+4√3-2m

TH1: \(maxf\left(t\right)\le0\) \(\Leftrightarrow f\left(1\right)\le0\) \(\Leftrightarrow7-2m\le0\) \(\Leftrightarrow m\ge\dfrac{7}{2}\)       (I)

TH2: \(maxf\left(t\right)>0\Leftrightarrow7-2m>0\Leftrightarrow m< \dfrac{7}{2}\)

Để \(f\left(t\right)\le0\) có nghiệm \(t\in\left[\sqrt{6};2\sqrt{3}\right]\)

 \(\Leftrightarrow\left[{}\begin{matrix}2\sqrt{6}-2m\le0\\2\sqrt{6}-2m>0\ge-6+4\sqrt{3}-2m\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}m\ge\sqrt{6}\\\sqrt{6}>m\ge-3+2\sqrt{3}\end{matrix}\right.\)

Kết hợp với đk ta có:\(\left[{}\begin{matrix}\dfrac{7}{2}>m\ge\sqrt{6}\\\sqrt{6}>m\ge-3+2\sqrt{3}\end{matrix}\right.\)           (II)

Từ (I) (II) ta có: \(m\in\left[-3+2\sqrt{3};+\infty\right]\)