K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2019

Đáp án B

Xét hàm số  f x = 1 π x 3 - 3 m x 2 + m , ta có

f ' x = 3 x 2 - 6 m x . 1 π x 3 - 3 m x 2 + m . ln 1 π .

Để hàm số đã cho nghịch biến trên khoảng  - ∞ ; + ∞

⇔ f ' x ≤ 0 ; ∀ x ∈ ℝ ⇔ 3 x 2 - 6 m x ≥ 0 ; ∀ x ∈ ℝ

⇔ x x - 2 m ≥ 0 ; ∀ x ∈ ℝ ⇒ m = 0 .

25 tháng 7 2018

Chọn D

Cách1:

Ta có: .

Vậy

.

Đặt .

Vậy .

Ta có:. Vậy .

5 tháng 12 2019

Đáp án A

26 tháng 12 2017

23 tháng 8 2019

24 tháng 11 2018

Đáp án D

14 tháng 12 2019

 Đáp án B

Phương pháp:

Hàm số y = f(x) nghịch biến trên (-∞;+∞) khi và chỉ khi f'(x) ≤ 0, ∀ x ∈ (-∞;+∞), f'(x) = 0 tại hữu hạn điểm.

Cách giải:

Đề thi Học kì 1 Toán 12 có đáp án (Đề 1)

Hàm số đã cho nghịch biến trên khoảng (-∞;+∞)

13 tháng 4 2019

Chọn A

Điều kiện: . Điều kiện cần để hàm số nghịch biến trên khoảng .

Ta có : .

Ta thấy .

Để ham số nghịch biến trên khoảng

 

.

26 tháng 10 2019

Đáp án A

6 tháng 7 2019

Đáp án C

Điều này xảy ra khi và chỉ khi  - 4 < - m < 0 ⇔ 0 ≤ ≤ m < 4

1 tháng 9 2021

\(f'\left(x\right)=-x^2+2x+m\)

Để hs y = f(x) nghịch biến trên khoảng (0; dương vc)

\(f'\left(x\right)\le0\forall x\in\left(0;+\infty\right)\)

\(-x^2+2x+m\le0\)

\(m\le x^2-2x\)

\(m\le-1\)