K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2018

Chọn B.

Đặt 

Khi đó, phương trình f( 4 x - x 2 ) =  log 2   m trở thành 

Để phương trình f( 4 x - x 2 ) =  log 2   m  có 4 nghiệm thực phân biệt thì đường thẳng y =  log 2   m  cắt đồ thị hàm số y = f(t) tại hai điểm phân biệt thỏa mãn t < 4.

Suy ra 

Vậy  ( 1 2 ;8).

18 tháng 9 2018

17 tháng 9 2019

6 tháng 1 2018

Chọn A

25 tháng 4 2017

Chọn D

18 tháng 5 2019

Chọn C.

6 tháng 11 2017

7 tháng 11 2017

Đáp án D

Ta có log0,02[log2 (3x + 1)] > log0,02 m

<=> m > log2 (3x + 1) (vì cơ số = 0,02 < 1)

Xét hàm số f(x) = log2 (3x + 1) trên  - ∞ ; 0

có  f ' x = 3 x . ln 3 3 x + 1 ln 2 > 0 ;   ∀ x ∈ - ∞ ; 0

Suy ra f(x) là hàm số đồng biến trên  - ∞ ; 0

⇒ m a x - ∞ ; 0 f x = f 0 = 1

Vậy để bất phương trình có nghiệm  ∀ x ∈ - ∞ ; 0 ⇒ m ≥ 1 .

7 tháng 6 2018

 Đáp án A

Phương pháp:

Cô lập m, đưa về dạng f(x) = m

Số nghiệm của phương trình là số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = m

Cách giải:

Điều kiện: x ≠ 2, x ≠ -4

Số nghiệm của phương trình đã cho bằng số giao điểm của đồ thị hàm số y = |x2 + 2x - 8| và đường thẳng y = 2m

Quan sát đồ thị hàm số bên, ta thấy, để đồ thị hàm số y = |x2 + 2x - 8| cắt đường thẳng y = 2m tại 4 điểm phân biệt thì 0 < 2m < 9 ⇔ m < log29 ⇔ m < 2 log23