K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2018

 

Đáp án là  B.

Ta có  y ' ( x ) = ( m - 1 ) x 2 - 2 ( m - 1 ) x - 1

TH1. m - 1 = 0 ⇔ m = 1 .Khi đó

y , = - 1 < 0 , ∀ x ∈ ℝ .Nên hàm só luôn nghịch biếến trên .

TH2. m - 1 ≢ 0 ⇔ m ≢ 1 .Hàm số luôn nghịch biến trên khi

y , ≤ 0 , ∀ x ∈ ℝ ⇔ ( m - 1 ) x 2 - 2 ( m - 1 ) x - 1 ≤ 0 , ∀ x ∈ ℝ ⇔ m - 1 < 0 ∆ ' ≤ 0 ⇔ m < 1 m ( m - 1 ) ≤ 0 ⇔ 0 ≤ m ≤ 1 . Kết hợp ta được 0 ≤ m < 1 .

 

26 tháng 12 2017

Đáp án B

Ta có y ' = 3 ( m - 1 ) + ( 2 m + 1 ) sin   x  để hàm số nghịch biến trên  ℝ thì y ' ≤ 0  với mọi x xét BPT

3 ( m - 1 ) + ( 2 m + 1 ) sin   x ≤ 0 Nếu m = - 1 2  BPT luôn đúng. Với m > - 1 2  BPT ⇔ sin   x ≤ 3 ( 1 - m ) 2 m + 1  để hàm số luôn nghịch biến với mọi x thì  3 ( 1 - m ) 2 m + 1 ≥ 1 ⇒ - 1 2 < m ≤ 2 5 . Với m < - 1 2  BPT ⇔ sin   x ≥ 3 ( 1 - m ) 2 m + 1  để hàm số luôn nghịch biến với mọi x thì  3 ( 1 - m ) 2 m + 1 ≤ - 1 ⇒ m < - 1 2

Kết hợp hai trường hợp ta có  m ≤ 2 5

12 tháng 8 2018

Đáp án B

Để ý thấy lời giải bài toán sai ở bước 3 do m có thể nhỏ hơn 0

9 tháng 6 2017

8 tháng 5 2019

6 tháng 10 2018

23 tháng 10 2017

Đáp án B

25 tháng 12 2018

19 tháng 7 2019

Từ giả thiết, thay x bởi x-1 ta được 

Khi đó ta có 

Suy ra 

YCBT 

Chọn B.

23 tháng 10 2018

Đáp án C

Bảng biến thiên của hàm số f(x) là

Hàm số  f x  là hàm số chẵn trên  ℝ nên đồ thị của hàm số nhận trục tung làm trục đối xứng. Do đó phương trình  f ( x ) + m = 0 có bốn nghiệm thực phân biệt khi và chỉ khi phương trình f ( x ) + m = 0 có hai nghiệm dương phân biệt hay phương trình f ( x ) = - m  có hai nghiệm dương phân biệt

⇔ 1 < - m < e 4 ⇔ - e 4 < m < - 1