K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2019

6 tháng 2 2018

Đáp án C

Phương trình ⇔ − m = x 3 − 12 x − 2 . Điều kiện trở thành đường  y= m cắt đồ thị hàm số y = x 3 − 12 x − 2 tại 3 điểm phân biệt. 

Lập bảng biến thiên của  y = x 3 − 12 x − 2   .

Nhìn vào bảng biến thiên, điều kiện của m là  − m ∈ 14 ; − 18 ⇔ m ∈ − 14 ; 18 .

15 tháng 10 2019

17 tháng 4 2018

Đáp án D

Phương pháp:

Đánh giá số nghiệm của phương trình f(x) = m + 1 bằng số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = m + 1

Cách giải:

Số  nghiệm của phương trình f(x) = m + 1 bằng số giao điểm của đồ thị hàm số y = f(x)

và đường thẳng y = m + 1

Để f(x) = m + 1 có 3 nghiệm thực phân biệt thì 2 < m+1 < 4 ó3 < m < 3

19 tháng 9 2019
28 tháng 8 2017

Đáp án D.

Đặt t = cos 3 x , ( - 1 ≤ t ≤ 1 ) Phương trình trở thành 2 t 2 + ( 3 - 2 m ) t + m - 2 = 0  

Ta có ∆ = 2 m - 5 2 Suy ra phương trình có hai nghiệm t 1 = 1 2 t 2 = m - 2  

Trường hợp 1:

 Với t 1 = 1 2 → cos 3 x = 1 2 ⇔ 3 x = π 3 + k 2 π 3 x = - π 3 + k 2 π ⇔ x = π 9 + k 2 π 3 x = - π 9 + k 2 π 3  

* Với x = π 9 + k 2 π 3 và  x ∈ - π 6 ; π 3 thì - π 6 < - π 9 + k 2 π 3 < π 3 ⇔ 1 12 < k < 2 3  

Do k ∈ ℤ nên k = 0 → x = - π 9  

* Với x = - π 9 + k 2 π 3 và  x ∈ - π 6 ; π 3 thì - π 6 < - π 9 + k 2 π 3 < π 3 ⇔ - 1 12 < k < 2 3  

Do  k ∈ ℤ nên  k = 0 → x = - π 9

Suy ra phương trình đã cho luôn có hai nghiệm trên khoảng - π 6 ; π 3

Trường hợp 2: Với t 2 = m - 2 → cos 3 x = m - 2 Xét f ( x ) = cos 3 x  trên  - π 6 ; π 3

Đạo hàm f ' ( x ) = - 3 sin 3 x ; f ' ( x ) = 0 ⇔ x = 0 ∈ - π 6 ; π 3  

Bảng biến thiên:


Để phương trình đã cho có 3 nghiệm trên  - π 6 ; π 3 khi và chỉ khi phương trình cos 3 x = m - 2  có 1 nghiệm trên  - π 6 ; π 3 , hay đồ thị f ( x ) = cos 3 x cắt đường thẳng y = m - 2 tại đúng 1 điểm. Quan sát bảng biến thiên, suy ra  - 1 ≤ m - 2 < 0 ⇔ 1 ≤ m < 2

1 tháng 9 2018

16 tháng 6 2018

28 tháng 1 2019