K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2017

Đáp án: D.

Xét hàm số

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có: y' = x 2  - mx = 0 ⇔ x = 0 hoặc x = 3

Nếu m = 0: Phương trình thành  x 3 /3 - 5 = 0, có nghiệm duy nhất.

Nếu m ≠ 0: Phương trình đã cho có nghiệm duy nhất khi và chỉ khi cực đại và cực tiểu của hàm số

Giải sách bài tập Toán 12 | Giải sbt Toán 12

cùng dấu.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

27 tháng 9 2019

Đáp án: B.

Với m = 0, phương trình 2 x 3  - 5 = 0 có nghiệm duy nhất.

Với m ≠ 0, đồ thị hàm số y = 2 x 3  + 3m x 2  - 5 chỉ cắt Ox tại một điểm khi y CĐ . y CT  > 0. Ta có y' = 6 x 2  + 6mx = 6x(x + m) = 0 có hai nghiệm là x = 0, x = -m; y(0) = -5, y(-m) = -2 m 3  + 3 m 3  - 5 =  m 3  - 5.

Suy ra y(0).y(-m) = -5( m 3  - 5) > 0 ⇔ m <  5 3

NV
10 tháng 3 2023

\(f^2\left(\left|x\right|\right)-\left(m-6\right)f\left(\left|x\right|\right)-m+5=0\) có \(a-b+c=0\) nên có các nghiệm \(\left[{}\begin{matrix}f\left(\left|x\right|\right)=-1\\f\left(\left|x\right|\right)=m-5\end{matrix}\right.\)

- Với \(f\left(\left|x\right|\right)=-1\Rightarrow\left|x\right|^2-4\left|x\right|+3=-1\Rightarrow\left|x\right|=2\Rightarrow x=\pm2\) có 2 nghiệm

- Xét \(f\left(\left|x\right|\right)=m-5\Leftrightarrow\left|x\right|^2-4\left|x\right|+8=m\) (1)

Từ BBT của \(y=\left|x\right|^2-4\left|x\right|+8\) dễ dàng suy ra (1) có 4 nghiệm pb khi \(4< m< 8\)

\(\Rightarrow m=\left\{5;6;7\right\}\) có 3 giá trị nguyên

11 tháng 3 2018

Chọn D.

Đặt t = 3x > 0, phương trình trở thành t2 - (m - 1) t + 2m = 0 (*)

Yêu cầu bài toán thành phương trình (*)  có đúng một nghiệm dương.

+ (*)  có nghiệm kép dương 

+ (*)  có hai nghiệm trái dấu khi đó; 2m < 0 hay m < 0.

Vậy m < 0 hoặc  thỏa yêu cầu bài toán.

12 tháng 11 2018
20 tháng 4 2017

Đáp án B

30 tháng 10 2017

Đáp án B.

Đặt t = log2 x,

khi đó  m + 1 log 2 2   x + 2 log 2   x + m - 2 = 0

⇔ m + 1 t 2 + 2 t + m - 2 = 0 (*).

Để phương trình (*) có hai nghiệm phân biệt

Khi đó gọi x1, x2 lần lượt hai nghiệm của phương trình (*).

Vì 0 < x1 < 1 < x2 suy ra

15 tháng 12 2017