Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải
5 = x2y2 + ( x-2) 2 + ( 2y-2)2 -2xy(x + 2y -4 )
= [ x.y - ( x + 2.y -4 ) ] 2 - 2 ( y - 1 ) ( x - 2 )
= ( xy - x - 2y + 4 )2 -4.( xy - x - 2y + 2 )
= A2 - 4 ( A - 2 )
<=> A2 - 4.A + 3 = 0
<=> \(\orbr{\begin{cases}xy-x-2y+4=3\\xy-x-2y+4=1\end{cases}}\)
Lưu ý : đặt : A = xy - x - 2y + 4
TH1 : xy - x - 2.y + 4 = 3
<=> xy - x - 2y + 1 = 0
<=> x.( y - 1 ) - 2.(y-1 ) = 1
<=> ( x - 2 ) ( y - 1 ) = 1
Ta có bảng :
x-2 | 1 | -1 |
y - 1 | 1 | -1 |
x | 3 | -1 |
y | 2 | 0 |
TH2 : xy - x - 2y + 4 = 1
<=> ( x- 2 ) . ( y -1 ) =-1
x-2 | -1 | 1 |
y - 1 | 1 | -1 |
x | -1 | 3 |
y | 2 | 0 |
\(\hept{\begin{cases}2\sqrt{2xy-y}+2x+y=10\left(1\right)\\\sqrt{3y+4}-\sqrt{2y+1}+2\sqrt{2x-1}=3\left(2\right)\end{cases}}\)
\(ĐK:x\ge\frac{1}{2};y\ge0\)
\(\left(1\right)\Leftrightarrow\left(\sqrt{2x-1}+\sqrt{y}\right)^2=9\Leftrightarrow\sqrt{2x-1}+\sqrt{y}=3\)
\(\Leftrightarrow\sqrt{2x-1}=3-\sqrt{y}\)(*)
Thay \(\sqrt{2x-1}=3-\sqrt{y}\)vào (2), ta được: \(\sqrt{3y+4}-\sqrt{2y+1}-2\left(\sqrt{y}-2\right)-1=0\)
\(\Leftrightarrow\left(\sqrt{3y+4}-4\right)-\left(\sqrt{2y+1}-3\right)-2\left(\sqrt{y}-2\right)=0\)
\(\Leftrightarrow\frac{3\left(y-4\right)}{\sqrt{3y+4}+4}-\frac{2\left(y-4\right)}{\sqrt{2y+1}+3}-\frac{2\left(y-4\right)}{\sqrt{y}+2}=0\)
\(\Leftrightarrow\left(y-4\right)\left(\frac{3}{\sqrt{3y+4}+4}-\frac{2}{\sqrt{2y+1}+3}-\frac{2}{\sqrt{y}+2}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}y=4\Rightarrow x=1\\\frac{3}{\sqrt{3y+4}+4}=\frac{2}{\sqrt{2y+1}+3}+\frac{2}{\sqrt{y}+2}\left(3\right)\end{cases}}\)
Với \(y\ge0\)thì \(\frac{3}{\sqrt{3y+4}+4}\le\frac{1}{2}\)
Từ (*) suy ra \(y\le9\Rightarrow\frac{2}{\sqrt{2y+1}+3}+\frac{2}{\sqrt{y}+2}>\frac{1}{2}\)
Suy ra (3) vô nghiệm
Vậy hệ có cặp nghiệm duy nhất \(\left(x,y\right)=\left(1,4\right)\)
ta có: \(5-x^2-2x=y^2+2y+2.\)
\(\Leftrightarrow\left(y+1\right)^2+\left(x+1\right)^2=5\)
mà \(\left(y+1\right)^2\ge0;\left(x+1\right)^2\ge0\) nên
\(\left(y+1\right)^2+\left(x+1\right)^2=0+5=1+4=2+3\)
TH1: \(\hept{\begin{cases}\left(y+1\right)^2=0\\\left(x+1\right)^2=5\end{cases}\Rightarrow\hept{\begin{cases}y=-1\\x=\sqrt{5}-1\end{cases}}}\)
đến đây tự giải đc rồi nha!
xét xong 3 cặp trên thì kết luận vì x,y có vai trò như nhau nên ta có 6 cặp
Võ Thị Quỳnh Giang sai rồi bạn, bài này mình giải được rồi !