Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2y^2+2xy+x+3y-13=0\)
\(\Leftrightarrow2y\left(y+x\right)+x+y+2y=13\)
\(\Leftrightarrow\left(x+y\right)\left(2y+1\right)+2y+1=14\)
\(\Leftrightarrow\left(2y+1\right)\left(x+y+1\right)=14\)
Rồi bạn làm từng cặp ra nhé!
x2 + 2y2 + 2xy + 3y - 4 = 0
<=> 4x2 + 8y2 + 8xy + 12y - 16 = 0
<=> (4x2 + 8xy + 4y2) + (4y2 + 12y + 9) = 25
<=> (2x+ 2y)2 + (2y + 3)2 = 25 = 0 + 52 = 32 + 42
Do x;y là số nguyên và 2y + 3 là số lẻ => (2y + 3)2 thuộc {52; 32}
Xét các TH xảy ra:
+)\(\hept{\begin{cases}2x+2y=0\\2y+3=5\end{cases}}\) <=> \(\hept{\begin{cases}x+y=0\\y=1\end{cases}}\) <=> \(\hept{\begin{cases}x=-1\\y=0\end{cases}}\)
+) \(\hept{\begin{cases}2x+2y=0\\2y+3=-5\end{cases}}\)
+) \(\hept{\begin{cases}2x+2y=4\\2y+3=3\end{cases}}\)
+) \(\hept{\begin{cases}2x+2y=-4\\2y+3=-3\end{cases}}\)
+) \(\hept{\begin{cases}2x+2y=4\\2y+3=-3\end{cases}}\)
+) \(\hept{\begin{cases}2x+2y=-4\\2y+3=3\end{cases}}\)
(Tự tính x;y)
\(x^2y^2+\left(x-2\right)^2+\left(2y-2\right)^2-2xy\left(x+2y-4\right)=0\)
<=> \(x^2y^2+\left(x+2y-4\right)^2-2\left(x-2\right)\left(2y-2\right)-2xy\left(x+2y-4\right)=0\)
<=> \(\left[x^2y^2-2xy\left(x+2y-4\right)+\left(x+2y-4\right)^2\right]-4\left(xy-x-2y+2\right)=0\)
<=> \(\left(xy-x-2y+4\right)^2-4\left(xy-x-2y+4\right)+8=0\)
<=> \(\left(xy-x-2y+2\right)^2+4=0\)(vô nghiệm)
=>phương trình vô nghiệm
pt <=> 9x^2+3y^2+12xy+12x+6y+15 = 0
<=> [(9x^2+12xy+4y^2)+2.(3x+2y).2+4] - (y^2+2y+1) + 12 = 0
<=> [(3x+2y)^2+2.(3x+2y).2+4] -(y+1)^2 = -12
<=> (3x+2y+2)^2 - (y+1)^2 = -12
<=> (3x+2y+2+y+1).(3x+2y+2-y-1) = -12
<=> (3x+3y+3).(3x+y+1) = -12
<=> (x+y+1).(3x+y+1) = -4
Đến đó bạn dùng quan hệ ước bội cho các số nguyên mà giải nha !
Tk mk nha