K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Theo đề bài, ta có: \(x+2xy-y=4\)

\(\Rightarrow x\left(1+2y\right)-y=4\)

\(\Rightarrow2x\left(2y+1\right)-2y=8\)

\(\Rightarrow2x\left(2y+1\right)-\left(2y+1\right)=7\)

\(\Rightarrow\left(2y+1\right)\left(2x-1\right)=7\)

Vì \(x,y\in Z\Rightarrow2x-1;2y+1\inƯ\left(7\right)=\left\{\mp1;\mp7\right\}\)

Ta có bảng sau:

2x-11-17-7
2y+17-71-1
x104-3
y3-40-1

Vậy \(\left(x;y\right)\in\left\{\left(1;3\right),\left(0;-4\right),\left(4;0\right),\left(-3;-1\right)\right\}\)

25 tháng 2 2020

\(x+2xy-y=4\)

\(\Rightarrow2x+2xy-2y=4\)

\(\Rightarrow2x+2y\left(x-1\right)=4\)

\(\Rightarrow2\left[x+y\left(x-1\right)\right]=4\)

\(\Rightarrow x+y\left(x-1\right)=2\)

\(\Rightarrow\left(x-1\right)+y\left(x-1\right)=1\)

\(\Rightarrow\left(x-1\right).\left(1+y\right)=1\)

=>x(2y+1)-3y-1,5=2,5

=>(y+0,5)(2x-3)=2,5

=>(2y+1)(2x-3)=5

=>\(\left(2x-3;2y+1\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(2;2\right);\left(4;0\right);\left(1;-3\right);\left(-1;-1\right)\right\}\)

NV
26 tháng 3 2023

\(2xy+x-3y=4\)

\(\Leftrightarrow4xy+2x-6y=8\)

\(\Leftrightarrow4xy+2x-6y-3=5\)

\(\Leftrightarrow2x\left(2y+1\right)-3\left(2y+1\right)=5\)

\(\Leftrightarrow\left(2x-3\right)\left(2y+1\right)=5\)

2x-3-5-115
2y+1-1-551
x-1124
y-1-320

Vậy pt có các cặp nghiệm nguyên \(\left(x;y\right)=\left(-1;-1\right);\left(1;-3\right);\left(2;2\right);\left(4;0\right)\)

18 tháng 3 2023

\(x^2-3xy+2=y\)

\(\Rightarrow x^2+2=y\left(3x+1\right)\left(1\right)\)

\(\Rightarrow\left(x^2+2\right)⋮\left(3x+1\right)\)

\(\Rightarrow\left(9x^2+18\right)⋮\left(3x+1\right)\)

\(\Rightarrow\left[\left(9x^2-1\right)+19\right]⋮\left(3x+1\right)\)

Ta có \(9x^2-1=\left(3x+1\right)\left(3x-1\right)⋮\left(3x+1\right)\)

\(\Rightarrow19⋮\left(3x+1\right)\) nên \(3x+1\inƯ\left(19\right)\)

Lập bảng:

3x+1191-19-1
x60\(\dfrac{-20}{3}\left(l\right)\)\(\dfrac{-2}{3}\left(l\right)\)

Với \(x=6\). (1) \(\Rightarrow y=\dfrac{x^2+2}{3x+1}=\dfrac{6^2+2}{3.6+1}=2\)

Với \(x=0\). (1) \(\Rightarrow y=\dfrac{x^2+2}{3x+1}=\dfrac{0^2+2}{3.0+1}=2\)

Vậy các cặp số (x;y) thỏa điều kiện ở đề bài là \(\left(6;2\right),\left(0;2\right)\)

 

NV
13 tháng 2 2022

- Với \(y=0\Rightarrow x^2+x=3^0+1=2\)

\(\Rightarrow x^2+x-2=0\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

- Với \(y< 0\Rightarrow3^{2019y}\) không phải số nguyên \(\Rightarrow3^{2019y}+1\) không phải số nguyên (loại)

- Với \(y>0\Rightarrow3^{2019y}⋮3\Rightarrow3^{2019y}+1\) chia 3 dư 1

Mà \(x^2+x=x\left(x+1\right)\) là tích 2 số nguyên liên tiếp nên chia 3 chỉ có thể dư 0 hoặc 2

\(\Rightarrow x^2+x\ne3^{2019y}+1\) với mọi \(y>0\) \(\Rightarrow\) phương trình ko có nghiệm nguyên

Vậy pt đã cho có đúng 2 cặp nghiệm nguyên là \(\left(x;y\right)=\left(-2;0\right);\left(1;0\right)\)

26 tháng 8 2021

\(8\left|x-2017\right|=25-y^{2\text{​​}}\)

\(\Leftrightarrow8\left|x-2017\right|+y^2=25=25+0=24+1=21+4=16+9\)

Mà \(8\left|x-2017\right|\) chẵn nên ta có các trường hợp sau:

TH1: \(\left\{{}\begin{matrix}8\left|x-2017\right|=0\\y^2=25\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2017\\y=\pm5\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}8\left|x-2017\right|=24\\y^2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=2020\\x=2014\end{matrix}\right.\\y=\pm5\end{matrix}\right.\)

TH3: \(\left\{{}\begin{matrix}8\left|x-2017\right|=16\\y^2=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=2019\\x=2015\end{matrix}\right.\\y=\pm3\end{matrix}\right.\)

1 tháng 3 2018

\(x-y+2xy=3\)

\(\Rightarrow2x-2y+4xy=6\)

\(\Rightarrow2x-2y+4xy-1=5\)

\(\Rightarrow\left(2x+4xy\right)-\left(2y+1\right)=5\)

\(\Rightarrow2x\left(2y+1\right)-1\left(2y+1\right)=5\)

\(\Rightarrow\left(2x-1\right)\left(2y+1\right)=5\)

10 tháng 1 2019

\(x-y+2xy=3\)

\(\Leftrightarrow2\left(x-y+2xy\right)=2\times3\)

\(\Leftrightarrow2x-2y+4xy=6\)

\(\Leftrightarrow2x-2y+4xy-1=5\)

\(\Leftrightarrow\left(2x-4xy\right)-\left(2y+1\right)=5\)

\(\Leftrightarrow2x\left(2y+1\right)-\left(2y+1\right)=5\)

\(\Leftrightarrow\left(2x-1\right)\left(2y+1\right)=5\)

Bạn tự lập bảng để tìm nghiệm nhé

4 tháng 5 2021

Ta có : xy - 4x - 3y = 5

=> xy - 4x - 3y + 12 = 5 + 12

=> x(y - 4) - 3(y - 4) = 17

=> (x - 3)(y - 4) = 17

Vì x;y \(\inℤ\Rightarrow x-3;y-4\inℤ\)

Khi đó ta có 17 = 1.17 = (-1).(-17)

Lập bảng xét các trường hợp 

x - 3117-1-17
y - 4171-17-1
x4202-14
y215-133

Vậy các cặp (x;y) thỏa mãn là (4;21) ; (20;5) ; (2;-13) ; (-14;3)