Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề đúng : tìm tất cả các số nguyên dương \(a,b\) sao cho \(a+b^2\) chia hết cho \(a^2b-1\)
Có thể vào đây tham khảo\(\rightarrow\) Các bài toán và vấn đề về Số học
de the nao lam nhu vay
Tra loi: tat ca cac so nguyen duong a,b deu thoa man
để n^2 +2002 là số chính phương
=> n^2 +2002 =a^2 ( với a là số tự nhiên #0)
=> a^2 -n^2 =2002
=> (a-n)(a+n) =2002
do 2002 chia hết cho 2=> a-n hoặc a+n phải chia hết cho 2
mà a-n -(a+n) =-2n chia hết cho 2
=> a-n và a+n cung tính chẵn lẻ => a-n ,a+n đều chia hết cho 2
=>(a-n)(a+n) chia hết cho 4 mà 2002 không chia hết cho 4
=> vô lý
Ai giải được thì nhớ giải rõ ràng nhé! Xin cam ơn người giải được.