Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(x)=x(x+1)(x-1)(x+2)-24
=(x2+x)(x2+x-2)-24
Đặt t=x2+x-1 có
(t+1)(t-1)-24
tương đương (t-5)(t+5)
Thay t=x2+x-1 có
(x2+x-6)(x2+x+4)
suy ra x=2 x=-3
\(5\left(x-2\right)\left(x-1\right)-\left(5x-4\right)\left(x-2\right)=0\)
<=>\(\left(5x-5\right)\left(x-2\right)-\left(5x-4\right)\left(x-2\right)=0\)
<=>\(\left(x-2\right)\left[\left(5x-5\right)-\left(5x-4\right)\right]=0\)
<=>\(\left(x-2\right)\left(5x-5-5x+4\right)=0\)
<=>\(\left(-1\right)\left(x-2\right)=0\)
<=>\(x-2=0\)
<=>\(x=2\)
Vậy phương trình có tập nghiệm là x=2
Bạn tham khảo:
5(x-2)(x-1)-(5x-4)(x-2)=0
<=>5(x2-3x+2)-(5x2-6x+8)=0
<=>5x2-15x+10-5x2+6x-8=0
<=>-9x+2=0
<=>-9x=-2
<=>x=2/9
Pt tương đương với 4x^2+ 2x-8x-4-4x^2- 4x=0
Tương Đương Với -10x-4=0
Tương đương với x= -2/5
Vậy Pt Có Tập Ngiêm S= {-2/5 }
\(\Leftrightarrow x-1-5x-4+5x^2-10x=0\)
\(\Leftrightarrow5x^2-14x-5=0\)
\(\text{Δ}=\left(-14\right)^2-4\cdot5\cdot\left(-5\right)=296>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{14-2\sqrt{74}}{10}=\dfrac{7-\sqrt{74}}{5}\\x_2=\dfrac{7+\sqrt{74}}{5}\end{matrix}\right.\)
\(\left(x-1\right)-\left(5x+4\right)+5x\left(x-2\right)=0\\ \Leftrightarrow x-1-5x-4+5x^2-10x=0\\ \Leftrightarrow5x^2-14x-5=0\)
\(\Delta=\left(-14\right)^2-4.5.\left(-5\right)=196+100=296\)
\(x_1=\dfrac{-\left(-14\right)+\sqrt{296}}{2.5}=\dfrac{14+2\sqrt{74}}{10}=\dfrac{7+\sqrt{74}}{5}\)
\(x_2=\dfrac{-\left(-14\right)-\sqrt{296}}{2.5}=\dfrac{14-2\sqrt{74}}{10}=\dfrac{7-\sqrt{74}}{5}\)
a. Đúng
Vì x 2 + 1 > 0 với mọi x nên phương trình đã cho tương đương với phương trình:
4x – 8 + (4 – 2x) = 0 ⇔ 2x – 4 = 0 ⇔ 2x = 4 ⇔ x = 2
b. Đúng
Vì x 2 – x + 1 = x - 1 / 2 2 + 3/4 > 0 với mọi x nên phương trình đã cho tương đương với phương trình:
(x + 2)(2x – 1) – x – 2 = 0 ⇔ (x + 2)(2x – 2) = 0
⇔ x + 2 = 0 hoặc 2x – 2 = 0 ⇔ x = - 2 hoặc x = 1
c. Sai
Vì điều kiện xác định của phương trình là x + 1 ≠ 0 ⇔ x ≠ - 1
Do vậy phương trình không thể có nghiệm x = - 1
d. Sai
Vì điều kiện xác định của phương trình là x ≠ 0
Do vậy x = 0 không phải là nghiệm của phương trình
Ta có: x + x < ( 2 x + 3 ) ( x - 1 )
Điều kiện: x ≥ 0
⇔ x + x < 2 x - 2 x + 3 x - 3
⇔ - x < - 3 ⇔ x > 3
Kết hợp điều kiện, tập nghiệm bất phương trình là: x > 3