K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2020

\(x\left(x-1\right)^2\ge4-x\)

\(\Leftrightarrow x\left(x^2-2x+1\right)\ge4-x\)

\(\Leftrightarrow x^3-2x^2+x\ge4-x\)

\(\Leftrightarrow x^3-2x^2+2x-4\ge0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+2\right)\ge0\)

\(\Leftrightarrow x-2\ge\left(Vì:x^2+2>0\forall x\right)\)

\(\Leftrightarrow x\ge2\)

\(\Rightarrow S=\left\{2;+\infty\right\}\)

1 tháng 2 2020

Sửa giúp mình nha. Dòng cuối á tại mới được cô Nguyễn Linh Chi bên olm nhắc =))

\(\Rightarrow S=[2;+\infty)\)

31 tháng 1 2020

Cái này nãy tui mới làm ở bên h_ọ_c_24 ý.

\(x\left(x-1\right)^2\ge4-x\)

\(\Leftrightarrow x\left(x^2-2x+1\right)\ge4-x\)

\(\Leftrightarrow x^3-2x^2+x\ge4-x\)

\(\Leftrightarrow x^3-2x^2+2x-4\ge0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+2\right)\ge0\)

\(\Leftrightarrow x-2\ge0\left(Vì:x^2+2>0\forall x\right)\)

\(\Leftrightarrow x\ge2\)

Vậy \(S=\left\{2;+\infty\right\}\)

1 tháng 2 2020

@ Băng Băng @ Mình không kí hiệu tập nghiệm như vậy nhé em:

S = [ 2; \(+\infty\))

2: \(\text{Δ}=1^2-4\cdot\left(-1\right)\cdot\left(-m\right)=1-4m\)

Để bất phương trình vô nghiệm thì \(\left\{{}\begin{matrix}1-4m< 0\\-1< 0\end{matrix}\right.\Leftrightarrow m>\dfrac{1}{4}\)

6 tháng 4 2020

hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

7 tháng 4 2020

,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

NV
21 tháng 3 2022

\(\dfrac{x^2+x+3}{x^2-4}\ge1\Leftrightarrow\dfrac{x^2+x+3}{x^2-4}-1\ge0\)

\(\Leftrightarrow\dfrac{x+7}{x^2-4}\ge0\Rightarrow\left[{}\begin{matrix}-7\le x< -2\\x>2\end{matrix}\right.\)

\(\Rightarrow S\cap\left(-2;2\right)=\varnothing\)

NV
23 tháng 7 2021

- Với \(m=\dfrac{1}{2}\Rightarrow\left(x+1\right)^2>0\) có tập nghiệm \(R\backslash\left\{-1\right\}\) thỏa mãn

- Với \(m>\dfrac{1}{2}\) BPT có nghiệm: \(\left\{{}\begin{matrix}x>-1\\x< -2m\end{matrix}\right.\) hay \(D=\left(-\infty;-2m\right)\cup\left(-1;+\infty\right)\)

Thỏa mãn do \(\left(1;+\infty\right)\subset\left(-1;+\infty\right)\)

- Với \(m< \dfrac{1}{2}\) BPT có nghiệm: \(\left\{{}\begin{matrix}x>-2m\\x< -1\end{matrix}\right.\) hay \(D=\left(-\infty;-1\right)\cup\left(-2m;+\infty\right)\)

Tập nghiệm của BPT chứa \(\left(1;+\infty\right)\) khi:

\(-2m\le1\Rightarrow m\ge-\dfrac{1}{2}\Rightarrow-\dfrac{1}{2}\le m< \dfrac{1}{2}\)

Kết hợp lại ta được: \(m\ge-\dfrac{1}{2}\)

28 tháng 2 2017

Đáp án: C

2 tháng 1 2020

Đáp án C