Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5/a,
ta cần c/m: a/b=a +c/b+d
<=> a(b+d) = b(a+c)
ab+ad = ba+bc
ab-ba+ad=bc
ad=bc
a/b=c/d
vậy đẳng thức được chứng minh
b, Tương tự
ta có \(A=\frac{-24}{n}+\frac{17}{n}=\frac{\left(-24\right)+17}{n}=\frac{-7}{n}\)
\(\Rightarrow n\inƯ\left(-7\right)=\left\{-7,-1,1,7\right\}\)
\(\Rightarrow n=-7;n=-1;n=1;n=7\) để A là số nguyên
\(B=\frac{n-8}{n+1}+\frac{n+3}{n+1}=\frac{n-8+n+3}{n+1}=\frac{2n-5}{n+1}=\frac{2n+2-6}{n+1}=2-\frac{7}{n+1}\)
\(\Rightarrow n+1\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
nếu \(n+1=-7\Rightarrow n=-8\)
\(n+1=-1\Rightarrow n=-2\)
\(n+1=1\Rightarrow n=0\)
\(n+1=7\Rightarrow n=6\)
vậy \(n\in\left\{-8;-2;0;6\right\}\)để B là số nguyên
a: Ta có: \(2n+1⋮n+2\)
\(\Leftrightarrow2n+4-3⋮n+2\)
\(\Leftrightarrow n+2\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{-1;-3;1;-5\right\}\)
b: Để B là số nguyên thì \(n+3⋮n-2\)
\(\Leftrightarrow n-2+5⋮n-2\)
\(\Leftrightarrow n-2\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{3;1;7;-3\right\}\)
c: Để C là số nguyên thì \(3n+7⋮n-1\)
\(\Leftrightarrow3n-3+10⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)
hay \(n\in\left\{2;0;3;-1;6;-4;11;-9\right\}\)
`a)P={x|x ne 1,x ne -1}`
`b)C,D in ZZ`
`**C in ZZ`
`=>2 vdots n-1`
`=>n-1 in Ư(2)={+-1,+-2}`
`=>n in {0,2,3,-1}(1)`
`**D in ZZ`
`=>n+4 vdots n+1`
`=>n+1+3 vdots n+1`
`=>3 vdots n+1`
`=>n+1 in Ư(3)={+-1,+-3}`
`=>n in {0,-2,2,-4}(2)`
`(1)(2)=>n in {0,2}`
Vậy `n in {0,2}` thì `C,D` đồng thời nguyên.
\(\frac{n-8}{n+1}+\frac{n+3}{n+1}=\frac{n-8+n+3}{n+1}=\frac{8+3}{n+1}=\frac{11}{n+1}\in Z\)
=>11 chia hết cho n+1
=>n+1 E Ư(11)={-11;-1;1;11}
=>n E {-12;-2;0;10}
Vậy...
Đáp án cần chọn là: C
Ta có:
n − 8 n + 1 + n + 3 n + 1 = n − 8 + n + 3 n + 1 = 2 n − 5 n + 1 = 2 n + 2 − 7 n + 1 = 2 n + 1 − 7 n + 1 = 2 n + 1 n + 1 − 7 n + 1 = 2 − 7 n + 1
Yêu cầu bài toán thỏa mãn nếu hay n + 1∈Ư(7) = {±1;±7}
Ta có bảng:
Vậy n∈{0;−2;6;−8}
Ta có:
`n − 8 n + 1 + n + 3 n + 1 = n − 8 + n + 3 n + 1 = 2 n − 5 n + 1 = 2 n + 2 − 7 n + 1 = 2 n + 1 − 7 n + 1 = 2 n + 1 n + 1 − 7 n + 1 = 2 − 7 n + 1`
Yêu cầu bài toán thỏa mãn nếu hay` n + 1∈Ư(7) = {±1;±7}`
Ta có bảng:
Vậy n∈`{0;−2;6;−8}`