K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
VH
Tìm số tự nhiên nhỏ nhất khi chia cho 3 thì dư 2; khi chia cho 7 thì dư 6; khi chia cho 25 thì dư 24
0
T
1
BT
23 tháng 11 2017
Gọi số cần tìm là a => a+1 chia hết cho 3, 7 và 25
=> a+1 là BSC (3, 7, 25)
BSCNN của 3, 7, 25 là: 3.7.25=525
=> Số cần tìm nhỏ nhất là: a=525-1=524
Tổng quát: a=525.k-1 (k thuộc N*)
Gọi số tự nhiên đó là \(a\).
\(a\)khi chia cho \(3,7,25\)lần lượt có số dư là \(2,6,24\)nên \(a+1\)chia hết cho cả \(3,7,25\)mà \(a\)nhỏ nhất
nên \(a+1\)là \(BCNN\left(3,7,25\right)\).
Phân tích thành tích các thừa số nguyên tố: \(3=3,7=7,25=5^2\)
Do đó \(BCNN\left(3,7,25\right)=3.7.5^2=525\)
\(a+1=525\Leftrightarrow a=524\).