Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n^2+4⋮n-1\)
Mà \(n-1⋮n-1\)
\(\Leftrightarrow\hept{\begin{cases}n^2+4⋮n-1\\n^2-n⋮n-1\end{cases}}\)
\(\Leftrightarrow n+4⋮n-1\)
Mà \(n-1⋮n-1\)
\(\Leftrightarrow5⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(5\right)\)
\(\Leftrightarrow\orbr{\begin{cases}n-1=1\\n-1=5\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}n=0\\n=6\end{cases}}\)
a/n+2 chia hết cho n-1
=>(n-1)+3 chia hết cho n-1
=>n-1 thuộc Ư(3)={1;3}
n-1=1=>n=2
n-1=3=>n=4
=>n E {2;4}
b/
2n+1 chia hết chon+ 1
=>2(n+1)-1 chia hết cho n+1
=>1 chia hết cho n+1
=>n+1=1
=>n=0
1. a) \(\left(n+15\right)⋮\left(n+2\right)\)
\(\Rightarrow\left[n+15-\left(n+2\right)\right]⋮\left(n+2\right)\)
\(\Rightarrow\left[n+15-n-2\right]⋮\left(n+2\right)\)
\(\Rightarrow13⋮\left(n+2\right)\)
\(\Rightarrow\left(n+2\right)\inƯ_{\left(13\right)}=\left\{\pm1;\pm13\right\}\)
\(\Rightarrow n\in\left\{...\right\}\)
b) \(\left(3n+17\right)⋮\left(n+1\right)\)
\(\Rightarrow\left(3n+17\right)⋮3\left(n+1\right)\)
\(\Rightarrow\left(3n+17\right)⋮\left(3n+3\right)\)
\(\Rightarrow\left[\left(3n+17\right)-\left(3n+3\right)\right]⋮\left(n+1\right)\)
\(\Rightarrow\left[3n+17-3n-3\right]⋮\left(n+1\right)\)
\(\Rightarrow14⋮\left(n+1\right)\)
\(\Rightarrow\left(n+1\right)\inƯ_{\left(14\right)}=\left\{\pm1;\pm2;\pm7;\pm14\right\}\)
\(\Rightarrow n\in\left\{...\right\}\)