Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 .
\(\left|x^2+|x+1|\right|=x^2+5\)
\(Đkxđ:x^2+5\ge0\)
\(\Leftrightarrow x^2\ge-5,\forall x\) ( với mọi x , vì bất cứ số nào bình phương cũng lớn hơn hoặc bằng - 5 )
\(\Leftrightarrow\hept{\begin{cases}x^2+\left|x+1\right|=x^2+5\\x^2+\left|x+1\right|=-x^2-5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left|x+1\right|=5\\\left|x+1\right|=-2x^2-5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+1=5;x+1=-5\\x+1=-2x^2-5;x+1=2x^2+5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=4;x=-6\\2x^2+x+1=0;-2x^2+x-4=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=4;x=-6\\2x^2+x+1=0\left(VN\right);-2x^2+x-4=0\left(VN\right)\end{cases}}\) ( VN là vô nghiệm nha )
Vậy : x = 4 hoặc x = -6
a) Ta có : x + 2xy + y = 7
=>2x + 4xy + 2y = 14
=>2x(1+2y) + 2y + 1 = 14 + 1
=>2x(2y+1) + 2y + 1 = 15
=>(2y+1).(2x+1) = 15
Giả sử x > y=> 2y+1 > 2x +1
Lập bảng là gia thôi!
b)Ta có : 2^x + 2^y =1025
TH1: 2^x lẻ, 2^y chẵn
=> 2^x lẻ=>2^x=1 => x= 1
Khi đó : 2^x + 2^y = 1025
=>1 +2^y = 1025
=> 2^y = 1024
=> 2^y = 2^10
=> y = 10
Vậy x = 1, y = 10
TH2: làm tương tự xét: 2^x chẵn , 2^y lẻ thì dc x= 10 , y= 1
a) ko có a, b thỏa mãn
b) Giá trị lớn nhất của A = \(\frac{7}{6}\)
c) 16
d) x = \(\frac{14}{3}\)
e) x=-1
g) n= 7
h)
j) x=1
k) n=11