K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

`P= (x-1)(x^2-x+1)` là một số nguyên tố

`=>` \(\left[{}\begin{matrix}x-1=1\\x^2-x+1=1\end{matrix}\right.\)

`<=>` \(\left[{}\begin{matrix}x=2\\x=0\\x=1\end{matrix}\right.\)

1 tháng 5 2019

Ta phải tìm số tự nhiên n để P = (n - 1)(n2- n + 1) là số nguyên tố .

P = (n - 1)(n2- n + 1)  là một tích , P là số nguyên tố thì P chỉ có 2 ước số là 1 và chính nó. Như vậy P = (n - 1)(n2- n + 1) là số nguyên tố thì: 

\(\orbr{\begin{cases}\hept{\begin{cases}n-1=1\\p=n^2-n+1\end{cases}}\\\hept{\begin{cases}n^2-n+1=1\\p=n-1\end{cases}}\end{cases}}\)- T rường hợp 1;           n - 1 = 1 , tức là n = 2 khi đó p = n2 - n + 1 = 3 thỏa mãn

     - Trường hơp 2 : n2 - n + 1 = 1 , ta tìm được n = 0 , n = 1  . Cả hai giá trị này đều cho ta số p = n - 1 không phải là số nguyên tố.

Trả lời n = 2 , p = 3

8 tháng 4 2023

A = \(\dfrac{2x-1}{x+2}\) 

a, A là phân số ⇔ \(x\) + 2  # 0  ⇒ \(x\) # -2

b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2 

                                          ⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2

                                         ⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2

                                         ⇒ 5 ⋮ \(x\) + 2

                            ⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}

                            ⇒  \(x\)   \(\in\) { -7; -3; -1; 3}

c, A = \(\dfrac{2x-1}{x+2}\) 

  A = 2 - \(\dfrac{5}{x+2}\)

Với \(x\) \(\in\) Z và \(x\) < -3 ta có

                     \(x\) + 2 < - 3 + 2 = -1

              ⇒  \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\)  = -5  ⇒ - \(\dfrac{5}{x+2}\)<  5

              ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)

Với \(x\)  > -3;  \(x\) # - 2; \(x\in\)  Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1

            \(\dfrac{5}{x+2}\) > 0  ⇒  - \(\dfrac{5}{x+2}\)  < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)

Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)

Kết hợp (1); (2) và(3)  ta có A(max) = 7 ⇔ \(x\) = -3

 

                     

             

                                   

     

 

            

6 tháng 1 2021

ok how are you

Câu 1:Tập hợp các số tự nhiên x sao cho 6 chia hết (x-1) là {}(Nhập các phần tử theo giá trị tăng dần, ngăn cách bởi dấu ";").Câu 2:Tập hợp các số có hai chữ số là bội của 32 là {}(Nhập các phần tử theo giá trị tăng dần, ngăn cách bởi dấu ";").Câu 3:Tập hợp các số có hai chữ số là bội của 41 là {}(Nhập các phần tử theo giá trị tăng dần, ngăn cách bởi dấu ";").Câu 4:Có  số vừa là...
Đọc tiếp

Câu 1:
Tập hợp các số tự nhiên x sao cho 6 chia hết (x-1) là {}
(Nhập các phần tử theo giá trị tăng dần, ngăn cách bởi dấu ";").

Câu 2:
Tập hợp các số có hai chữ số là bội của 32 là {}
(Nhập các phần tử theo giá trị tăng dần, ngăn cách bởi dấu ";").

Câu 3:
Tập hợp các số có hai chữ số là bội của 41 là {}
(Nhập các phần tử theo giá trị tăng dần, ngăn cách bởi dấu ";").

Câu 4:
Có  số vừa là bội của 3 vừa là ước của 54.

Câu 5:
Có tất cả bao nhiêu cặp số tự nhiên x,y thỏa mãn (2x+1)(y-3)?
Trả lời: Có  cặp

Câu 6:
Tìm số nguyên tố p nhỏ nhất sao cho p+2 và p+4 cũng là số nguyên tố.
Trả lời: Số nguyên tố p=

Câu 7:
Tập hợp các số tự nhiên x sao cho 14 chia hết (2x+3) là {_____}
(Nhập các phần tử theo giá trị tăng dần, ngăn cách bởi dấu ";").

Câu 8:
Tổng 5 số nguyên tố đầu tiên là _______

Câu 9:
Dùng ba trong bốn số 4; 3; 1; 5 ghép lại thành số chia hết cho 9 và chia hết cho 5.
Tập các số viết được là {}
(Nhập các phần tử theo giá trị tăng dần, ngăn cách bởi dấu ";").

Câu 10:
Cho x,y là các số nguyên tố thỏa mãn x^2+45+y^2 . Tổng x+y

(mình chỉ cần kq thui, chính xác vào nhé)

3
22 tháng 12 2016

?????????????

8 tháng 6 2017

????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????