Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm số tự nhiên nhỏ nhất có ba chữ số sao cho khi chia a cho 11 thì dư 5, khi chia a cho 13 thì dư 8
Gọi a là số cần tìm .
Theo đề :
\(\Rightarrow\hept{\begin{cases}a-7⋮11\\a-11⋮13\end{cases}\Rightarrow\hept{\begin{cases}a-7+22⋮11\\a-11+26⋮13\end{cases}}\Rightarrow\hept{\begin{cases}a-15⋮11\\a-15⋮13\end{cases}}}\)
\(\Rightarrow a-15\in BC\left(11,13\right)\)
\(\Rightarrow BC\left(11,13\right)=B\left(143\right)=\left\{0;143;286;...\right\}\)
Mà a là số tự nhiên nhỏ nhất có ba chữ số \(\Rightarrow a-15\in\left\{143\right\}\)
\(\Rightarrow a=143+15\Rightarrow a=158\)
Vậy a = 158
P/s: Hình như mình làm sai , mong các bạn thông cảm
Ta có a chia cho 11 dư 5 => a = 11x + 5 => a + 6 = 11x + 5 + 6 = 11x + 11 chia hết cho 11
Do 77 chia hết cho 11 => a + 6 + 77 cũng chia hết cho 11 => a + 83 chia hết cho 11 (1)
Lại có a chia 13 dư 8 => a = 13y + 8 => a + 5 = 13y + 8 + 5 = 13y + 13 chia hết cho 13
Do 78 chia hết cho 13 => a + 5 + 78 chia hết cho 13 => a + 83 chia hết cho 13 (2)
Từ 1 và 2 => a + 83 chia hết cho BCNN(11;13) => a + 83 chia hết cho 143
=> a = 143k - 83
Để a nhỏ nhất và a có 3 chữ số => k = 2 => a = 203
a chia 11 dư 5⇔a=11m+5=>a+6=(11m+5)+6=11m|+11=11.(m+1) chia hết cho 11( m thuộc N)
Vì 77 chia hết cho 11 nên (a+6)+77 cũng chia hết cho 11⇔a+83 chia hết cho 11. (1)
a chia 13 dư 8⇔a=13n+8=>a+5=(13n+8)+5=13n+13=13.(n+1) chia hết cho 11 ( n thuộc N)
Vì 78 chia hết cho 13 nên (a+5)+78 cũng chia hết cho 13⇔a+83 chia hết cho 13. (2)
Từ (1) và (2)=>a+83chia hết cho BCNN(11;13)⇔a+83 chhia hết cho 143
=>a=143k-83( k thuộc N*)
Để a nhỏ nhất có 3 chữ số ta chọn k=2. Khi đó a=203
Goi số đó là \(x\) ( \(x\) \(\in\) A = {\(x\) \(\in\) N/ 100 \(\le\) \(x\) 999} )
Theo bài ra ta có:
\(\left\{{}\begin{matrix}x+4⋮7\\x+6⋮11\end{matrix}\right.\) ⇒\(\left\{{}\begin{matrix}11.\left(x+4\right)⋮77\\7.\left(x+6\right):77\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}11x+44⋮77\\7x+42⋮77\end{matrix}\right.\)
Trừ vế với vế ta được: 4\(x\) + 2 \(⋮\) 77 ⇒ 2.(\(2x\) + 1) ⋮ 77
⇒ 2\(x\) + 1 ⋮ 77 ⇒ 6\(x\) + 3 ⋮ 77 ⇒ 7\(x\) + 42 - (6\(x\) - 3)⋮ 77
⇒ \(x\) + 39 \(⋮\) 77 ⇒ \(x\) + 39 \(\in\) B(77) = { 77; 154; 231;....;}
⇒ \(x\) \(\in\) { 38; 115; 192;.....;}
Vì \(x\) là số tự nhiên bé nhất có 3 chữ số nên \(x\) = 115
Kết luận: Số tự nhiên thỏa mãn đề bài là 115