Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là a thì 3a – 7 ∈ BC(8;11) và và a là số nhỏ nhất thỏa mãn 100≤a≤999 suy ra 293≤ 3a – 7 ≤2990
BCNN(8;11) = 88
3a – 7 ∈ {0;88;176;264;352;440;..}
Vì a là số tự nhiên có ba chữ số nhỏ nhất nên 3a – 7 = 440
a = 149
gọi số đó là a
a chia cho 8 dư 5 => a + 3 chia hết cho 8 => a + 3 + 24 = a + 27 chia hết cho 8
a chia cho 11 dư 6 => a + 5 chia hết cho 11 => a + 5 + 22 = a + 27 chia hết cho 11
=> a + 27 chia hết cho 11 và 8
=> a+ 27 \(\in\)B (8;11) = B (88) = {0; 88; 176;...}
Vì a là số nhỏ nhất có 3 chữ số nên a + 27 nhỏ nhất
chọn a + 27 = 176 => a = 176 - 27 = 149
Bài 2 :
Gọi số cần tìm là a. Ta có
a + 6 chia hết cho 11 suy ra ( a+6) +77 chia hết cho 11 (1)
a+ 5 chia hết chỏ suy ra ( a+5) +78 chia hết cho 13 suy ra a+ 83 chia hết cho 13 (2)
a +83 chia hết cho 143
Từ (1) và (2) => a = 143k -83 ( k \(\in\) N* )
để được a nhỏ nhất có 3 chữ số ta chọn k = 2, được a = 203
Vậy số cần tìm là 203.