Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là a (a \(\ne\) 0)
Do a chia 5 dư 1 nên a-1 chia hết cho 5
Mà 10 chia hết cho 5 nên a- 1 + 10 chia hết cho 5
=> a+9 chia hết cho 5 (1)
Do a chia 7 dư 5 nên a-5 chia hết cho 7
Mà 14 chia hết cho 7 nên a- 5 + 14 chia hết cho 7
=> a+9 chia hết cho 7 (2)
Từ (1) và (2) suy ra a+9 là bội của 5 và 7
mà a nhỏ nhất nên a+9 = BCNN (5;7) = 35
=> a = 26
Vậy số phải tìm là 26
a) Gọi số cần tìm là a
=> a = BCNN(2;3;4;5;7) + 1
2 = 2 ; 3 = 3 ; 4 = 22 ; 5 = 5 ; 7 = 7
=> a = BCNN(2;3;4;5;7) + 1 = 22.3.5.7 + 1 = 412
Vậy số cần tìm là 421
b) Gọi số cần tìm là a
=> a + 1 chia hết cho 2;3;4;5
=> a = BCNN(2;3;4;5) - 1
2 = 2 ; 3 = 3 ; 4 = 22 ; 5 = 5
=> a = BCNN(2;3;4;5)- 1 = 22.3.5 - 1 = 59
Vậy số cần tìm là 59
Lời giải:
Gọi số cần tìm là $a$
Theo bài ra thì:
$a-3\vdots 4\Rightarrow a+1\vdots 4$
$a-4\vdots 5\Rightarrow a+1\vdots 5$
$a-5\vdots 6\Rightarrow a+1\vdots 6$
Tức là $a+1$ là bội chung của $4,5,6$
$\Rightarrow a+1\vdots \text{BCNN(4,5,6)}$
$\Rightarrow a+1\vdots 60$
Đặt $a=60k-1$ với $k$ là số tự nhiên
$a\vdots 7$ tức là $60k-1\vdots 7$
$\Leftrightarrow 60k-1-56k\vdots 7$
$\Leftrightarrow 4k-1\vdots 7$
$\Leftrightarrow 4k-8\vdots 7$
$\Leftrightarrow 4(k-2)\vdots 7$
$\Leftrightarrow k-2\vdots 7$
Để $a$ nhỏ nhất thì $k$ nhỏ nhất. Trong trường hợp này, số $k$ tự nhiên nhỏ nhất là $2$
$\Rightarrow a=60k-1=60.2-1=119$
Tham khảo bn nhé !!!
theo đề ta có:a:9dư 5 ⇒2a-1 chia hết cho 9
a:7 dư 4 ⇒2a-1 chia hết cho7
a:5 dư 3 ⇒2a-1 chia hết cho 5
vì 2a-1 chia hết cho 9,7,4 và a nhỏ nhất ⇒2a-1 thuộc BCNN(9,7,4)
9=32, 5=5, 7=7
BCNN(9,7,4)=32.7.5=315
Ta có: 2a-1=315
2a= 315+1
2a=316
a=316:2
a=158
Vậy số cần tìm là :158
Gọi số cần tìm là a
Ta có : a : 3 dư 1 => a+ 2 chia hết cho 3
a: 5 dư 3 => a+ 2 chia hết cho 5
a: 7 dư 5 => a+ 2 chia hết cho 7
=> a+ 2 chia hết cho cả 3,5,7
Ta có : 3 = 3
5 =5
7 = 7
=> BCNN(3,5,7) = 3 x 5 x7 =105
=> a + 2 thuộc BC ( 3,5,7) = { 0, 105,210,...}
Vì a+ 2 nhỏ nhất nên a+2 = 105
a = 105-2=103
**** mjk nha