Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là a, thương và số dư là b
Vì số dư luôn nhỏ hơn số chia => 0 <= b <= 14
=> a = 15 x b + b = 16 x b
Với b = 0; 1;..........;14 thì a = 0;16;..........;224
Gọi số cần tìm là a .
Theo đề bài, ta có : a : 2 ( dư 1 ) ; a : 3 ( dư 1 ) ; a : 4 ( dư 1 ) ; a : 5 ( dư 1 ) ; a : 6 ( dư 1 ) ; a : 7 ( dư 1 ) ; a là một số nhỏ nhất .
Thì : a - 1 chia hết cho 2 , 3 , 4 , 5 , 6 , 7 ; a - 1 là một số nhỏ nhất .
=> a - 1 = BCNN ( 2 , 3 , 4 , 5 , 6 , 7 )
Ta có :
2 = 2
3 = 3
4 = 22
5 = 5
6 = 2 . 3
7 = 7
=> a - 1 = BCNN ( 2 , 3 , 4 , 5 , 6 , 7 ) = 2 . 3 . 5 . 7 = 210
Mà a là một số nhỏ nhất , nên a = 210 + 1 = 211 .
Vậy : Số cần tìm đó là : 211 .
Ta có: 8 - 2 = 6, vậy số cần tìm cộng với 6 thì chia hết cho 3, mà 6 lại chia hết cho 3 => Số đó chia hết cho 3
17 - 2 = 15, vậy số cần tìm cộng với 15 thì chia hết cho 5, mà 15 lại chia hết cho 5 => Số đó chia hết cho 5
Số cần tìm phải có chữ số tận cùng là 5 hoặc 0 để chia hết cho 5, mà số cần tìm là số có 2 chữ số, suy ra 5 + chữ số hàng chục chia hết cho 5 hoặc 0 + chữ số hàng chục chia hết cho 5. Chữ số hàng chục cần tìm có thể là 8 hoặc 9.
Ta có: 8 + 9 ko chia hết cho 3 (loại)
8 + 0 ko chia hết cho 3 (loại)
9 + 0 chia hết cho 3 (chọn)
9 + 5 ko chia hết cho 3 (loại)
Số cần tìm là 90
Đáp số: 90
Ta có sơ đồ:
Số lớn: [-----][-----][-----][-----][19]
Số bé: [-----]...........133.............
Số lớn là: (133-19):(4-1)x4+19=171
Đ/s: 171.
gọi a là số lớn, b là số bé
theo đề bài ta có a+b=258 (*)
\(\frac{a}{b}\)=2 dư 21
=> a=2b-21
thay a=2b-21 vào (*) ta được:
2b+21+b=258
=>3b=237
=>b=79
vậy số bé là 79
SL = SB x 2 + 21
Coi số bé là 1 phần thì số lớn là 2 phần và 21 đơn vị . Vậy tổng số phần bằng nhau là : 1 + 2 = 3 ( phần )
Số bé là : ( 258 - 21 ) : 3 = 79
âu 1:
Gọi số cần tìm là AB (với A và B là các chữ số). Theo đề bài, ta có phương trình:
AB = 2 × A × B
Để giải phương trình này, ta thực hiện các bước sau:
- Ta có A và B đều là các chữ số từ 1 đến 9, do đó AB là một số có hai chữ số từ 10 đến 99.
- Vì AB = 2 × A × B, nên A và B đều khác 0. Do đó, ta có thể giả sử A > B mà không mất tính tổng quát.
- Khi đó, ta có A < 5 (nếu A ≥ 5 thì AB ≥ 50, vượt quá giới hạn của số có hai chữ số).
- Với mỗi giá trị của A từ 1 đến 4, ta tính được giá trị tương ứng của B bằng cách chia AB cho 2A. Nếu B là một số nguyên từ 1 đến 9 thì ta đã tìm được một giá trị của AB.
Kết quả là AB = 16 hoặc AB = 36.
Vậy có hai số thỏa mãn điều kiện đề bài là 16 và 36.
Câu 2:
Số cần tìm có dạng ABC, với A, B, C lần lượt là chữ số hàng trăm, chục và đơn vị. Theo đề bài, ta có hai điều kiện:
- ABC chia hết cho 9.
- A + C chia hết cho 5.
Để tìm số lớn nhất thỏa mãn hai điều kiện này, ta thực hiện các bước sau:
- Vì ABC chia hết cho 9, nên tổng các chữ số của ABC cũng chia hết cho 9. Do đó, ta có A + B + C = 9k (với k là một số nguyên dương).
- Từ điều kiện thứ hai, ta suy ra A + C là một trong các giá trị 5, 10 hoặc 15.
- Nếu A + C = 5 thì B = 4 và C = 1. Như vậy, ta có ABC = 401, không chia hết cho 9.
- Nếu A + C = 10 thì B = 0 và tổng các chữ số của ABC là 10, do đó ABC chia hết cho 9. Ta có ABC = 990.
- Nếu A + C = 15 thì B = 0 và tổng các chữ số của ABC là 18, do đó ABC chia hết cho 9. Ta có ABC = 999.
Vậy số lớn nhất thỏa mãn điều kiện đề bài là 999.
Câu 3:
A. Giả sử hai số tự nhiên a và b có tổng không chia hết cho 2. Khi đó, a và b có cùng hay khác tính chẵn lẻ. Nếu a và b đều là số lẻ thì tổng của chúng là một số chẵn, mâu thuẫn với giả thiết. Do đó, a và b phải cùng tính chẵn. Khi đó, ta có thể viết a = 2m và b = 2n, với m và n là các số tự nhiên. Từ đó, ta có:
ab = 2m × 2n = 2(m + n)
Vì m + n là một số tự nhiên, nên ab chia hết cho 2.
B. Số 2006 không thể là tích của ba số tự nhiên liên tiếp vì ba số tự nhiên liên tiếp phải có dạng (n - 1), n, (n + 1) hoặc n
59 nhé
59
tk mình nha mình cầu xin các bạn đây đi nha nha nha