Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Gọi số tự nhiên cần tìm là \(\left(a\in N\right)\)và \(a-1\)là \(BC\)của 4 ; 5 ; 6 và \(a⋮7\).Ta có:
\(BCNN\left(4;5;6\right)=60.\)
\(BC\left(4;5;6\right)=\left\{0;60;120;180;240;300;360;420;....\right\}\)
\(\Rightarrow a-1\in\left\{0;60;120;180;240;300;360;420\right\}\)
\(\Leftrightarrow a\in\left\{1;61;121;181;241;301;361;....\right\}\)
Vì \(\Rightarrow301⋮7\Rightarrow\)số tự nhiên cần tìm là : 301
Bài 2:
Gọi số đó là n
Theo bài ra ta có:
\(n:11\)dư 6 \(\Rightarrow n-6⋮11\Rightarrow n-6+33⋮11\Leftrightarrow n+27⋮11\)
\(n:4\)dư 1 \(\Rightarrow n-1⋮4\Rightarrow n-1+28⋮4\Leftrightarrow n+27⋮4\)
\(n:19\)dư 11 \(\Rightarrow n-11⋮19\Rightarrow n-6+38⋮19\Leftrightarrow n+27⋮19\)
\(\Rightarrow n+27⋮11;4;9\)
Có: \(n+27\)nhỏ nhất \(\Leftrightarrow n+7=BCNN\left(11;4;9\right)=836\)
\(\Rightarrow n=836-27=809\)
Vậy số tự nhiên nhỏ nhất cần tìm là: \(809\)
gọi số đó là a
vì a chia 3,4,5,6 đều dư 12
=>(a-12) chia hết 3,4,5,6
=>(a-12) thuộc BC(3,4,5,6)
3=3 ; 4=2^2 ; 5=5 ; 6=2*3
BCNN(3,4,5,6) = 2^2*3*5 =60
BC(3,4,5,6)=B(60)= {0;60;120;180;...}
vì a nhỏ nhất và chia 7 dư 3 =>(a-12) -3 chia hết cho 7 và là nhỏ nhất
từ tập hợp trên => (a-12)=180 =>a=192
thế đó, nói thật nó chẳng khó gì nhưng mình có làm sai thì nhắc nhé ^-^
Ta gọi A là số cần tìm
A : 2,3,4,5 và 6 dư 1
Suy ra A+1 chia hết cho 2,3,4,5 và 6
Suy ra A+1 thuộc BC(2,3,4,5,6)
2=2
3=3
4=22
6=2x3
Suy ra BCNN(2,3,4,5,60=22 x3=12
Vậy BC(2,3,4,5,6)=B(2,3,4,5,6)=12
Suy ra A+1 thuộc 1,12,24,36
Ta có bảng sau:
A+1 | 1 | 12 | 24 | 36 |
A | 0 | 11 | 23 | 35 |
VÌ A chia hết cho 7 nên A sẽ bằng 35
Giải
Gọi số tự nhiên đó là :a
Vì số đó chia cho 2,cho3,cho4,cho5,cho6 đều dư 1 suy ra a-1 = BC<2,3,4,5,6> mà a nhỏ nhất suy ra a=BCNN<2,3,4,5,6>
Ta có: 2=2
3=3
2=2.2
5=5
6=2.3
suy ra BCNN<2,3,4,5,6>=2.2.3.5=60
suy ra a-1= BC<2,3,4,5,6>=B<60>=(0,60,120,180,240,300,...)
suy ra a=(1,61,121,181,241,301,...)
Mặt khác a chia hết cho 7suy ra=241
Vậy số tự nhiên nhỏ nhất cần tìm là:241
Lời giải:
Gọi số tự nhiên thỏa mãn đề là $n$. Vì số đó chia $3,4,5,6$ đều dư $2$ nên số đó sẽ có dạng
$n=BCNN(3,4,5,6).k+2$ với $k$ tự nhiên
$n=60k+2$
$n$ chia $7$ dư $3$ nghĩa là $n-3\vdots 7$
$\Leftrightarrow 60k-1\vdots 7$
$\Leftrightarrow 63k-(60k-1)\vdots 7$
$\Leftrightarrow 3k+1\vdots 7$
$\Leftrightarrow 3k-6\vdots 7$
$\Leftrightarrow k-2\vdots 7$ nên $k=7t+2$ với $t$ tự nhiên.
Thay vô $n$ thì $n=60k+2=60(7t+2)+2=420t+122$
Vì $t\geq 0$ nên $n\geq 122$
Vậy số tự nhiên nhỏ nhất thỏa đề là $122$
Gọi số tự nhiên đó là a (\(a\in N\))
Vì a chia cho 4,5,6,9 đều dư 1 nên a + 1 chia hết cho 4,5,6,9
Mà a là số tự nhiên nhỏ nhất nên \(a+1\in BCNN\left(4,5,6,9\right)\)
Mà \(BCNN\left(4,5,6,9\right)=180\)nên \(a+1=180\Rightarrow a=179\)
Vậy số cần tìm là 179
Gọi số đó là a ( a thuộc N )
Có a : 4;5;6;9 đều dư 1 nên a-1 chia hết cho 4;5;6;9
Mà a nhỏ nhất nên a-1 nhỏ nhất
=> a-1 là BCNN của (4;5;6;9)
=> a-1 = 180
=> a=181
Vậy số tự nhiên đó là 181