Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi STN đó là a
Ta có: \(a-15\in BC\left(20;25;30\right)\)và a chia hết cho 41
=> \(a-15\in BC\left(300\right)\)
Mà a<1000 nên a-15<985
=> \(a-15\in\left\{0;300;600;900\right\}\)
Hay \(a\in\left\{15;315;615;915\right\}\)
Mà a chia hết cho 41 nên a=615
Vậy số tự nhiên đó là 615
tick nha !!!!!!!!!!!!!!!!!!
Gọi số tự nhiên cần tìm là a ( a∈∈ N; a < 1000)
Vì a chia cho 20, 25, 30 đều dư 15 nên a - 15 ⋮ 20, 25, 30 →→ a - 15∈BC(20,25,30)
Ta có : BCNN(20, 25, 30) = 22.52.3=300
→ a - 15 = {300, 600, 900, 1200 , ...}
→ a = {315, 615, 915, 1215, ... }
Mà theo đề bài thì a < 1000 và a ⋮ 41 nên a = 615
Vậy số tự nhiên cần tìm là 615.
Gọi số tự nhiên cần tìm là a ( a\(\in\)N, a <1000).
Vì a: 25;20 và 30 đều dư 15 nên (a-15)\(\in\)BC(20,25,30)
BCNN(20,25,30)=300
\(\Rightarrow\)(a-15)\(\in\)B(300)={0;300;600;900;1200;...}
\(\Rightarrow\)a \(\in\){15;315;615;915;1215;...}
Do a chia cho 41 không dư nên a\(⋮\)41; a<1000 nên a = 615
Vậy số tự nhiên cần tìm là 615
tìm số tự nhiên nhỏ hơn 1000 biết rằng số đó chia cho 20 ; 25;30 đều dư 15 nhưng lại chia hết cho 41
gọi số cần tìm là a
theo đề bài ta có :
a : 2 dư 1
a : 3 dư 1
a : 4 dư 1 => a + 1 chia hết cho 2 ; 3 ; 4 ; 5 ; 6
a : 5 dư 1 và 0 < a + 1 < 400
a : 6 dư 1
=> a + 1 thuộc BC(2 ; 3 ; 4 ; 5 ; 6)
ta có :
BCNN(2;3;4;5;6) = 22 . 3. 5 = 60
=> BC(2;3;4;5;6) = {0 ; 60 ; 120 ;180; 240 ; 300 ; .....}
Vì 0 < a+1 < 400
=> a + 1 nằm trong phạm vi {0 ; 60 ; 120 ; 180 ; 240 ; 300 ; 360}
ta có bảng sau
a+1 | 60 | 120 | 180 | 240 | 300 | 360 | 0 |
a | 59 | 119 | 179 | 239 | 299 | 359 | -1 |
a:7 | 8,428 | 17 | 25,57 | 34,14 | 42,714 | 51,28 | -0,142 |
Vậy số cần tìm là
119
Bài 1: Gọi số cần tìm là a. \(\left(a\in N,a< 400\right)\)
Khi đó ta có a - 1 chia hết cho 2, 3, 4, 5 và 6.
Nói cách khác a - 1 chia hết BCNN(2,3,4,5,6) = 60
Vậy a có dạng 60k + 1.
Do a < 400 nên \(60k+1< 400\Rightarrow k\le6\)
Do a chia hết 7 nên ta suy ra a = 301
Bài 2.
Do số cần tìm không chia hết cho 2 và chia 5 thiếu 1 nên phải có tận cùng là 9.
Số đó lại chia hết cho 7 nên ta tìm được các số là :
7.7 = 49 (Thỏa mãn)
7.17 = 119 (Chia 3 dư 2 - Loại)
7.27 = 189 (Chia hết cho 3 - Loại)
7.37 = 259 ( > 200 - Loại)
Vậy số cần tìm là 49.
a chia cho 4, 5, 6 dư 1 nên (a - 1) chia hết cho 4, 5, 6
=> (a - 1) là bội chung của (4,5,6)
=> a - 1 = 60n => a = 60n+1 với 1 ≤ n < (400-1)/60 = 6,65
mặt khác a chia hết cho 7 => a = 7m
Vậy 7m = 60n + 1
có 1 chia 7 dư 1
=> 60n chia 7 dư 6
mà 60 chia 7 dư 4
=> n chia 7 dư 5
mà n chỉ lấy từ 1 đến 6 => n = 5
a = 60.5 + 1 = 301
Tìm số tự nhiên nhỏ hơn 400 mà khi chia số đó cho 2;3;4;5;6 đều dư 1 và khi chia cho 7 thì không dư.
Gọi số cần tìm là a , ta có:
a chia 2;3;4;5;6 dư 1
=> a - 1 thuộc BC(2;3;4;5;6)
2 = 2 ; 3 = 3 ; 4 = 22 ; 5 = 5 ; 6 = 2.3
=> BCNN(2;3;4;5;6) = 22.3.5 = 60
Vậy a \(\in\) {1 ; 61 ; 121 ; 181 ; 241 ; 301 ; 361 ; 421 ; ..}
Mà a < 400 và a chia hết cho 7 nên a = 301
Vậy số cần tìm là 301
Gọi số cần tìm là a ( a thuộc N*)
a chia 2;3;4;5;6 dư 1
=> a - 1 thuộc BC(2;3;4;5;6)
2 = 2 ; 3 = 3 ; 4 = 22 ; 5 = 5 ; 6 = 2.3
=> BCNN(2;3;4;5;6) = 22.3.5 = 60
Vậy a ∈ {1 ; 61 ; 121 ; 181 ; 241 ; 301 ; 361 ; 421 ; ..}
Mà a < 400 và a chia hết cho 7 nên a = 301
Vậy số Cần tìm là 301
Bài giải :
Gọi số tự nhiên cần tìm là a ( a∈ N; a < 1000)
Vì a chia cho 20, 25, 30 đều dư 15 nên a - 15 ⋮ 20, 25, 30 → a - 15 ∈BC(20,25,30)
Ta có : BCNN(20, 25, 30) = 22.52.3=300
→ a - 15 = {300, 600, 900, 1200 , ...}
→ a = {315, 615, 915, 1215, ... }
Mà theo đề bài thì a < 1000 và a ⋮ 41 nên a = 615
Vậy số tự nhiên cần tìm là 615.
BẠN TICK ĐÚNG CHO MÌNH NHÉ,CẢM ƠN BẠN RẤT NHÌU
nếu bạn thích có thể chép bên trên .HOÀN TOÀN ĐÚNG