Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2n+5=2n+4+1=2\left(n+2\right)+1⋮\left(n+2\right)\Leftrightarrow1⋮\left(n+2\right)\)
mà \(n\)là số tự nhiên nên \(n+2\ge2\)do đó không tồn tại giá trị của \(n\)thỏa mãn.
* n+5 chia hết cho n+1
=> n+1+4 chia hết cho n+1
mà n+1 chia hết cho n+1
=> 4 chia hết cho n+1
=> n+1 thuộc Ư(4) = {1;2;4}
=> n thuộc {0; 1; 3}
* n+9 chia hết cho n-1
=> n-1+10 chia hết cho n-1
=> 10 chia hết cho n-1
=> n-1 thuộc Ư(10)={1;2;5;10}
=> n thuộc {2; 3; 6; 11}
* 2n+5 chia hết cho n+2
=> 2n+4+1 chia hết cho n+2
=> 2.(n+2)+1 chia hết cho n+2
=> 1 chia hết cho n+2
=> n+2 thuộc Ư(1)={1}
Mà n là số tự nhiên
=> không có n thỏa mãn.
n+5=n-3+8
=>8 chia hết cho n-3
=>n-3 thuộc {1;-1;2;-2;4;-4;8;-8}
=> n thuộc {4;2;5;1;7;-1;11;-5}
ma n la stn
=>n={1;2;4;5;7;11}
Ta có:
4n - 5
= 4n - 2 - 3
= 2(2n - 1) - 3
4n - 5⋮2n - 1
⇔2(2n - 1) - 3⋮2n - 1
2(2n - 1)⋮2n - 1
=>3⋮2n - 1
hay 2n - 1∈Ư(3)
Ư(3) = {1;-1;3;-3}
Với 2n - 1 = 1 ⇔ 2n = 1 + 1 = 2 ⇔ n = 2 : 2 = 1
Với 2n - 1 = -1 ⇔ 2n = -1 + 1 = 0 ⇔ n = 0 : 2 = 0
Với 2n - 1 = 3 ⇔ 2n = 3 + 1 = 4 ⇔ n = 4 : 2 = 2
Với 2n - 1 = -3 ⇔ 2n = -3 + 1 = -2 ⇔ n = -2 : 2 = -1
Vì n ∈ N nên n = {0;1;2}
Ta có : \(\frac{n-2}{n-1}=\frac{\left(n-1\right)+3}{n-1}=\frac{n-1}{n-1}+\frac{3}{n-1}=1+\frac{3}{n-1}\)
Để : n - 2 \(⋮\)n - 1 <=> \(\frac{3}{n-1}\in Z\)<=> 3 \(⋮\)n - 1 <=> n - 1 \(\in\) \(Ư\left(3\right)\)= { 1, -1, 3, -3 }
* Với n - 1 = 1 => n = 1 + 1 = 2 ( thỏa mãn )
* Với n - 1 = -1 => n = -1 + 1 = 0 ( không thỏa mãn )
* Với n - 1 = 3 => n = 3 + 1 = 4 ( thỏa mãn )
* Với n - 1 = -3 => n = - 3 + 1 = -2 ( thỏa mãn )
Vậy với n \(\in\){ 2 , 4 , -2 } thì n - 2 \(⋮\)n - 1
a) Ta có n-2=n-1+(-1) nên để n-2 chia hết cho n-1 thì n1 là ước của -1. Vậy n=0 và n=2
b) 3n-5=3(n-2) +1 nên suy ra n-2 là ước của 1. Vậy n=3 hoặc n=1
VÌ 5 chia hết cho n-2
=> n-2 thuộc Ư(5)={-5;-1;1;5}
Thay lần lượt tìm các giá trị của n nha
_Kudo_
\(2n+5⋮n+1\)
Ta có: \(\left(n+1\right)⋮\left(n+1\right)\)
\(\Rightarrow2\left(n+1\right)⋮\left(n+1\right)\)
\(\Rightarrow\left(2n+5\right)-\left(2n+2\right)⋮\left(n+1\right)\)
\(\Rightarrow\left(2n+5-2n-2\right)⋮\left(n+1\right)\)
\(\Rightarrow3⋮\left(n+1\right)\)
\(\Rightarrow\left(n+1\right)\inƯ\left(3\right)=\left\{1;3\right\}\)
\(\Rightarrow n\in\left\{0;2\right\}\)
Vậy \(n\in\left\{0;2\right\}\)
~~~Học Tốt ~~~