K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2018

        \(5\left(2-3n\right)+42+3n\ge0\)

\(\Leftrightarrow\)\(10-15n+42+3n\ge0\)

\(\Leftrightarrow\)\(52-12n\ge0\)

\(\Leftrightarrow\)\(12n\le52\)

\(\Leftrightarrow\)\(n\le\frac{13}{3}\)

Vì  \(n\in N\) nên   \(n=\left\{0;1;2;3;4\right\}\)

19 tháng 5 2019

19 tháng 4 2019

a) \(5\left(2-3n\right)+42+3n\ge0\\\)

\(< =>10-15n+42+3n\ge0\)

\(< =>52-12n\ge0\)

\(< =>4\left(13-3n\right)\ge0\)

\(< =>13-3n\ge0\)

\(< =>3n\ge13\)

\(< =>n\ge\frac{13}{3}\)

Mà n là số tự nhiên=> Tập nghiệm của bpt đã cho là: \(\left\{n|n\in N,n\ge4\right\}\)

19 tháng 4 2019

b) \(\left(n+1\right)^2-\left(n+2\right)\left(n-2\right)\le1,5\)

\(< =>n^2+2n+1-n^2+4\le1,5\)

\(< =>2n+5\le1,5\)

\(< =>2n\le-3,5\)

\(< =>n\le-1,75\)

Mà n là số tự nhiên nên bpt vô nghiệm.

27 tháng 3 2017

Bài 2: (1) <=> \(4\left(n+1\right)+3n-6< 19\)

<=> \(4n+4+3n-6< 19\)

<=> \(7n-2< 19\)

<=> \(7n< 21\) <=> \(n< 3\) (*)

(2) <=> \(\left(n-3\right)^2-\left(n+4\right)\left(n-4\right)\le43\)

<=> \(n^2-6n+9-n^2+16\le43\)

<=> \(-6n+25\le43\) <=> \(-6n\le18\Leftrightarrow n\le-3\) (**)

Từ (*) và (**) => \(n\le3\) thì mới tìm được mà thỏa mãn 2 phương trình đã cho. Nhưng đề yêu cầu tìm n \(\in\) N nên k có n thỏa mãn

27 tháng 3 2017

Bài 1: a) Nếu đề bài là:

\(5\left(2-3n\right)+42+2n\ge0\)

\(\Leftrightarrow10-15n+42+2n\ge0\)

\(\Leftrightarrow-13n+52\ge0\Leftrightarrow-13n\ge-52\Leftrightarrow n\ge4\)

Vậy n \(\in\) N nhưng phải lớn hơn 4

1 tháng 5 2017

Ta có: m<n

\(\Leftrightarrow m\times\dfrac{1}{2}< n\times\dfrac{1}{2}\)

\(\Leftrightarrow\dfrac{m}{2}< \dfrac{n}{2}\)\(\Leftrightarrow\dfrac{m}{2}+\left(-5\right)=\dfrac{n}{2}+\left(-5\right)\)\(\Leftrightarrow\dfrac{m}{2}-5< \dfrac{n}{2}-5\)

a, \(5\left(2-3n\right)+42+3n\ge0\)

\(\Leftrightarrow10-15n+42+3n\ge0\)

\(\Leftrightarrow52-12n\ge0\Leftrightarrow52\ge12n\Leftrightarrow12n\le52\Leftrightarrow n\le\dfrac{13}{3}\)

Vậy bất phương trình có nghiệm \(n\le\dfrac{13}{3}\)

b, \(\left(n+1\right)^2-\left(n+2\right)\left(n-2\right)\le1,5\)

\(\Leftrightarrow n^2+2n+1-\left(n^2-4\right)\le1,5\)

\(\Leftrightarrow n^2+2n+1-n^2+4\le1,5\)

\(\Leftrightarrow2n+5\le1,5\)\(\Leftrightarrow2n\le-3,5\)\(\Leftrightarrow n\le-1,75\)

Vậy bất phương trình có nghiệm \(n\le-1,75\)

1 tháng 5 2017

1, giải : Vì m<n (gt)\(\Rightarrow\)\(\dfrac{m}{2}< \dfrac{n}{2}\)\(\Rightarrow\)\(\dfrac{m}{2}-5< \dfrac{n}{2}-5\)

2. a, 5(2-3n)+42+3n \(\ge\) 0

\(\Leftrightarrow\) 10-15n +42+3n\(\ge\) 0

\(\Leftrightarrow\) 52-12n\(\ge\) 0

\(\Leftrightarrow\) -12n \(\ge\) -52

\(\Leftrightarrow\)n\(\le\)\(\dfrac{13}{3}\)

b, \(\left(n+1\right)^2-\left(n-2\right)\left(n+2\right)\le15\)

\(\Leftrightarrow n^2+2n+1-n^2+4\le1,5\)

\(\Leftrightarrow2n+5\le1,5\)

\(\Leftrightarrow n\le-1,75\)

\(\left\{{}\begin{matrix}4\left(n+1\right)+3n-6< 19\\\left(n-3\right)^2-\left(n+2\right)\left(n-2\right)< =\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4n+4+3n-6< 19\\n^2-6n+9-n^2+4< =\dfrac{3}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}7n< 21\\-6n+13< =\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n< 3\\-6n< =-\dfrac{23}{2}\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{23}{12}< n< 3\)

mà n là số tự nhiên

nên n=2

29 tháng 6 2016

a) <=> 4n+4+3n-6 <19  <=>  7n<21  <=> n<3 (1)

b)  <=> n^2 - 6n + 9 - n^2 +16 \(\le\)43 

\(\Leftrightarrow\)-6n \(\le\)18  <=> n > 3 (2)

Từ 1 và 2 => n=\(\Phi\)