Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì n chia hết cho 9 nên S(n) chia hết cho 9 => S(A) chia hết cho 9 => S(B) chia hết cho 9 => S(C) chia hết cho 9.
Vì n là số có 2004 chữ số nên tổng của chúng không bằng 0 => S(C) chỉ có thể bằng 9
Thủ Lĩnh Thẻ Bài SAKURA
Gọi số cần tìm là abc ; abc viết theo thứ tự ngược lại có dạng là cba
Theo đề bài, ta có : cba - abc = 792
c x 100+b x10+ a - a x100 + b x10 +c= 792
c x100 - c +b x10 - b x 10 + a - a x100 = 792
c x 99 + a - a x 100 = 792
c x 99 + a = 792 + a x 100
c x 99 = 792 + a x100 - a
c x 99 = 792 + a x 99
c x 99 - a x99 = 792
(c - a) x 99 = 792
c - a = 792 : 99 = 8
Ta có : c b a
- a b c
7 9 2
Xét a và c : c - a = 8 nhưng trong phép tính c - a = 7 suy ra đây là phép trừ có nhớ và a < c nên phải lấy 1a - c = 2 ; nhớ 1 sang b ở số trừ. Nếu c lớn nhất = 9 thì a = 1 ta có : 11 - 9 = 2 ( đúng )
suy ra c =9; a = 1. Ta có :
9 b 1
- 1 b 9
7 9 2
suy ra b = 0 để b - ( b+ 1) có nhớ. Ta có :
901 - 109 = 792 Đ
Vậy số cần tìm là 109
Gọi M = ab (a khác 0)
Ta có N = a+b (N<19)
ab – (a+b) = P + 24 (0<P
10.a + b – a – b = P + 24
9.a = P + 24 (1)
Suy ra: 24 < P+24 < 34
hay 24 < 9.a < 34
Vậy a = 3
Thay vào (1). Ta được: 9 x 3 = P + 24
=> P = 3
P là tổng các chữ số của N, mà N < 19
=> N = 3 hoặc N = 12
N=3 và a=3 => b=0
N=12 và a=3 => b=9
M=30 và M= 39
Thử lại:
M=30 N = 3
M-N= 30 – 3 = 27
P = 3 => P + 24 = 27
M-N = P + 24 = 27 (đúng)
M=39 N = 3+9 = 12
M-N= 39 – 12 = 27
P = 1 + 2 = 3 => P + 24 = 27
M-N = P + 24 = 27 (đúng)
Gọi M= ab (a khác 0)
Ta có N = a+b (N<19)
ab – (a+b) = P + 24 (0<P<10)
10.a + b – a – b = P + 24
9.a = P + 24 (1)
Suy ra: 24 < P+24 < 34
hay 24 < 9.a < 34
Vậy a = 3
Thay vào (1). Ta được: 9 x 3 = P + 24
=> P = 3
P là tổng các chữ số của N, mà N < 19
=> N = 3 hoặc N = 12
N=3 và a=3 => b=0
N=12 và a=3 => b=9
M=30 và M= 39
ta có :
1+2+3+..+n
n(n+1)/2 =a.111
n(n+1) =2.a.111
=2.a.3.37
=6a.37
suy ra : 6a=36
aaa=666
vậy n= 36
Từ đề bài ta thấy n có số chữ số <5
Nếu n có 3 chữ số thì n + s[n] < 2000 => n có số chữ số lớn hơn 3
=> n là số có 4 chữ số và ta đặt n = abcd
Ta có n = 2000 - s[n] <2000 => a = 1
=> 1bcd+1+b+c+d = 2000 => 1001+bcd +b+c+d = 2000
=> bcd = 999-(b+c+d) mà b+c+d<=9+9+9=27 => bcd >=999-27=972 => b=9
=> 9cd=999-9-c-d => 900+cd=999-9-(c+d) => cd=90-(c+d)<90
Mà c+d<=9+9=18 nên cd=90-(c+d)>=90-18=72 => c=7 hoặc c=8
Với c=7 => 7d=90-7-d => 70+d=90-7-d => 2xd=13 loại
Với c=8 => 8d=90-8-d => 80+d=90-8-d => 2xd=2 => d=1
=> n = 1981
=> n=1990
Thử 1990+1+9+9=