Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{8}{2^n}=2\Rightarrow2.2^n=8\)
\(\Rightarrow2^{n+1}=2^3\)
\(\Rightarrow n+1=3\)
\(\Rightarrow n=2\)
d,\(\left(2n-3\right)^2=9\)
\(\left(2n-3\right)^2=3^2\)
\(\Rightarrow\orbr{\begin{cases}2n-3=-3\\2n-3=3\end{cases}\Rightarrow\orbr{\begin{cases}2n=-3+3\\2n=3+3\end{cases}\Rightarrow}\orbr{\begin{cases}2n=0\\2n=6\end{cases}\Rightarrow}\orbr{\begin{cases}n=0\\n=3\end{cases}}}\)
Vậy n=0; n= 3
a, 16/2n=2
<=>2n=8
<=>n=4
b, (-3)^n =-27*81=-2187
n=7( vì (-3)^7 =-2187
c, 8^n : 2^n =4
<=> (8:2)^n=4
4^n=4
n=1
a)
\(\frac{16}{2^x}=2\)
\(\Rightarrow2^{x+1}=16\)
\(\Rightarrow2^{x+1}=2^4\)
\(\Rightarrow x+1=4\)
\(\Rightarrow x=3\)
b)
\(\frac{\left(-3\right)^x}{81}=-27\)
\(\Rightarrow\left(-3\right)^x=-\left(3^3.3^4\right)\)
\(\Rightarrow-3^x=-3^7\)
=> x=7
c)
\(8^n:2^n=4\)
\(\Rightarrow2^{3n}:2^n=4\)
\(\Rightarrow2^{3n-n}=4\)
\(\Rightarrow2^{2n}=2^2\)
=>2n=2
=>n=1
a)\(\frac{16}{2^n}=2\)
=>16:2n=2
=>2n=16:2
=>2n=8
b)ko nhớ cách làm
c)8n:2n=4
=>(23)n:2n=22
=>23n:2n=22
=>23n-n=22
=>22n=22
=>2n=2
=>n=1
dc rùi chứ
a, \(2.16\ge2^n>4\)
\(\Leftrightarrow2.2^4\ge2^n>2^2\)
\(\Leftrightarrow2^5>2^n>2^2\)
\(\Leftrightarrow5\ge n>2\)
Vậy \(n\in\left\{3;4;5\right\}\)
b, Câu b làm tương tự nhé!
a)2^5 lớn hơn hoặc bằng 2^n lớn hơn 2^2
suy ra n=4;3
b)243 nhỏ hơn , bằng 3^n nhỏ hơn hoặc = 243
suy ra n=5
a) 3^1=3
3^4=81
3^5=243
vậy n=1 đến 5
b)2^(2n-3).2^(8-2n)=2^[2n-3+(8-2n)]=2^(2n-3+8-2n)=2^5
16=2^4<2^n<2^5
n= không có
A! Bạn ơi! Bạn có thể giải thích câu a đc hong. Mình không hiểu cho lắm...