Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3n + 14 chia hết cho 3n + 1
3n + 14 =( 3n + 1 ) + 13 chia hết cho 3n + 1
= (3n + 1 ) chia hết cho 3n + 1
Suy ra 13 chia hết cho 3n + 1
Suy ra 3n + 1 thuộc Ư(13)={ 1 ; 13 }
3n + 1 | 1 | 13 |
n | 0 | 4 |
Vậy n thuộc { 0 ; 4 }
n + 11 chia hết cho n + 3
n + 11 = ( n + 3 ) + 8 chia hết cho n + 3
= n + 3 chia hết cho n + 3
Suy ra 8 chia hết cho n + 3
Suy ra n + 3 thuộc Ư(8) = { 1;2;4;8 }
n+ 3 | 1 | 2 | 4 | 8 |
n | không có giá trị nào cho n | không có giá trị nào cho n | 1 | 5 |
Vậy n thuộc {1 ; 5 }
2n + 27 chia hết cho 2n + 1
2n + 27 =( 2n + 1 )+ 26 chia hết cho 2n + 1
= ( 2n + 1 ) chia hết cho 2n + 1
Suy ra 2n + 1 thuộc Ư( 26 ) = { 1 ; 2 ; 13 ; 26 }
2n +1 | 1 | 2 | 13 | 26 |
n | 0 | ko có giá trị cho n | 6 | ko có giá trị cho n |
Vậy n thuộc { 0;6}
Nếu đúng thì mk và kb nha love you thanks mk nhanh nhất đó
a) \(6⋮\left(n-2\right)\Leftrightarrow\left(n-2\right)\inƯ\left(6\right)\)
Có \(Ư\left(6\right)=\left\{1;2;3;6\right\}\)
=>\(\left(n-2\right)\in\left\{1;2;3;6\right\}\)
Ta có bảng:
\(n-2\) | \(1\) | \(2\) | \(3\) | \(6\) |
\(n\) | \(3\) | \(4\) | \(5\) | \(8\) |
Vậy \(n\in\left\{3;4;5;8\right\}\)
b) \(\left(n+3\right)⋮\left(n-1\right)\Leftrightarrow\frac{n+3}{n-1}\)là số tự nhiên
Có:\(\frac{n+3}{n-1}=\frac{n-1+4}{n-1}=\frac{n-1}{n-1}+\frac{4}{n-1}=1+\frac{4}{n-1}\)
Vì 1 là số tự nhiên nên:
Để \(\frac{n+3}{n-1}\)là số tự nhiên thì \(\frac{4}{n-1}\)phải là số tự nhiên.
Để \(\frac{4}{n-1}\)là số tự nhiên thì: \(4⋮\left(n-1\right)\)
hay: \(\left(n-1\right)\inƯ\left(4\right)\)
Có \(Ư\left(4\right)=\left\{1;2;4\right\}\)
\(\Rightarrow\left(n-1\right)\in\left\{1;2;4\right\}\)
Ta có bảng:
\(n-1\) | \(1\) | \(2\) | \(4\) |
\(n\) | \(2\) | \(3\) | \(5\) |
Vậy \(n\in\left\{2;3;5\right\}\)
a) Ta có : 4n + 3 = 2(2n - 1) +5
Do 2n - 1 \(⋮\)2n - 1 nên 2(2n - 1) \(⋮\)2n - 1
Để 4n + 3 \(⋮\)2n - 1 thì 5 \(⋮\)2n - 1 => 2n - 1 \(\in\)Ư(5) = {1; 5}
Lập bảng :
2n - 1 | 1 | 5 |
n | 1 | 3 |
Vậy n = {5; 3} thì 4n + 3 chia hết cho 2n - 1
c) Ta có : n + 3 = (n - 1) + 4
Để (n - 1) + 4 \(⋮\)n - 1 thì 4 \(⋮\)n - 1 => n - 1 \(\in\)Ư(4) = {1; 2; 4}
Lập bảng :
n - 1 | 1 | 2 | 4 |
n | 2 | 3 | 5 |
Vậy n = {2; 3; 5} thì n + 3 \(⋮\)n - 1
mình xin lỗi mình đánh máy sai câu hỏi như này
A) n+7 chia hết cho n+2 ( với n khác 2 )
B) 3n+1 chia hết cho 2n+3