Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Để P là số nguyên tố thì một trong 2 thừa số ( n - 2 ) hoặc ( n2 + n - 5 ) một số là số nguyên tố và một số là 1
Vì nếu không có một số bằng 1 thì P là hợp số
TH1 : Nếu ( n - 2 ) = 1 thì n = 3
=> P = ( 3 - 2 ) . ( 32 + 3 - 5 ) = 1. ( 9 + ( -2 )= 1 .7 = 7 thoã mãn đề bài
TH2 : Nếu ( n2 + n - 5 ) = 1 thì n = 2
=> P = ( 2 - 2 ) . ( 22 + n - 5 ) = 0 .( 22 + n - 5 ) = 0 không thoã mãn đề bài
Vậy n = 3
2. Số số hạng của dãy số đó là : ( n - 1 ) : 1 + 1 = n
Tổng của dãy số đó là :
( n +1 ) . n : 2 = 20301
=> ( n + 1 ) . n = 40602
mà 202 . 201 = 40602
Vậy n = 201
Nhớ tk cho mình nhé ! OK
a) n + 7 = n + 2 + 5 chia hết cho n + 2
=> 5 chia hết cho n + 2 thì n+7 chia hết cho n+2
=> n+2 thuộc tập cộng trừ 1, cộng trừ 5
kẻ bảng => n = -1; -3; 3; -7
b) n+1 là bội của n-5
=> n+1 chia hết cho n-5
=> n-5 + 6 chia hết cho n-5
=> Để n+1 chia hết cho n-5 thì 6 chia hết cho n-5
=> n-5 thuộc tập cộng trừ 1; 2; 3; 6
kẻ bảng => n = 6; 4; 7; 3; 8; 2; 11; -1
a)Ta có: (n+7)\(⋮\)(n+2)
\(\Rightarrow\) (n+2+5)\(⋮\)(n+2)
Mà: (n+2)\(⋮\) (n+2)
\(\Rightarrow\) 5\(⋮\)(n+2)
\(\Rightarrow\) n+2\(\in\) Ư(5)={1;-1;5;-5}
\(\Rightarrow\) n\(\in\){-1;-3;3;-7}
đặt 2n + 34 = a^2
34 = a^2-n^2
34=(a-n)(a+n)
a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)
=> a-n 1 2
a+n 34 17
Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ
Vậy ....
Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.
=> S= (1004+14).100:2=50 900 ko là SCP
Câu hỏi của Bùi An - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo nhé!