Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là ab điều kiện : a khác 0 ; a , b là chữ số
Theo bài ra , ta có :
a - b = 7 => a = b + 7
ab = ba x 3 + 5 => 10a + b = 30b + 3a + 5 => 7a = 29b + 5 => 7 x ( b + 7 ) 29b + 5 = 7b + 49 = 29b + 5 => 44 = 22b => b = 2
=> a = 7 + 2 = 9
Vậy số cần tìm là : 92
M - 973 \(\in\)BC( 1256 ; 3568 ; 4184 )
N - 973 \(\in\)BC( 1256 ; 3568 ; 4184 )
Đặt a = BC( 1256 ; 3568 ; 4184 ) = 580 902 512
=> M - 973 = k . a ( k là một ẩn )
N - 973 = I . a ( Ia cũng là một ẩn )
Ta có : M là số lớn nhất có 12 chữ số
=> k . a \(\le\)9999.....9999 ( 12 số 9 )
=> k \(\le\)3 413
Dấu = xảy ra khi M lớn nhất => M = 3 413 . 292 972 048 + 973 = 999 913 600 797
Tương tư : N là số nhỏ nhất có 12 chữ số :
=> I.a \(\ge\)1011
=> I \(\ge\)342
Dấu = xảy ra khi N nhỏ nhất => N = 342 . 292 972 048 + 973 = 100 196 441 389
Cj tham khảo trong này nè :
Câu hỏi của Trieu tu Lam - Toán lớp 8 - Học toán với OnlineMath
a bằng số dư của phép chia N cho 2
=>a=1
=>abcd có dạng 1bcd
e thuộc số dư của phép N cho 6
=>e thuộc 0.1.2.3.4.5 mà d bằng số dư của phép chia N cho 5
=> d,e thuộc 00.11.22.33.44.05 c bằng số dư của phép chia N cho 4
=>c,d,e thuộc 000.311.222.133.044.105
=> a,b,c,d,e có dạng là 1b000,1b311,1,222,1b333,1b044,1b105 vì b bằng số dư của phép chia N cho 3
=>a+c+d+e chia hết cho 3
=> chọn được số 1b311.1b044
Ta được các số là : 10311.11311.12311.10044.11044.12044
a bằng số dư của phép chia N cho 2
=>a=1
=>abcd có dạng 1bcd
e thuộc số dư của phép N cho 6
=>e thuộc 0.1.2.3.4.5 mà d bằng số dư của phép chia N cho 5
=> d,e thuộc 00.11.22.33.44.05
c bằng số dư của phép chia N cho 4
=>c,d,e thuộc 000.311.222.133.044.105
=> a,b,c,d,e có dạng là 1b000,1b311,1,222,1b333,1b044,1b105
vì b bằng số dư của phép chia N cho 3
=>a+c+d+e chia hết cho 3
=> chọn được số 1b311.1b044
Ta được các số là : 10311.11311.12311.10044.11044.12044
Ai mướn mày trả lời hả Đức
Vì khi chia n cho 15 và 17 có số dư lần lượt là 7 và 5
=> n - 7 chia hết cho 15, n - 5 chia hết cho 17
=> n - 7 - 15 chia hết cho 15, n - 5 - 17 chia hết cho 17
=> n - 22 chia hết cho 15, n - 22 chia hết cho 17
=> n - 22 thuộc BC(15,17)
Do (15,17)=1 => n - 22 thuộc B(255)
=> n=255k+22(k thuộc N)
Lại có 99 999 < n < 1 000 000
=> 99 999 < 255k + 22 < 1 000 000
=> 99 977 < 255k < 999 978
=> 392 < k < 3922
Mà n nhỏ nhất => k nhỏ nhất => k = 393 => n = 255 × 393 + 22 = 100 237
Vậy số cần tìm là 100 237