Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{8n+193}{4n+3}=\frac{8n+6+187}{4n+3}=\frac{2.\left(4n+3\right)+187}{4n+3}=2+\frac{187}{n+3}\)
=>n+3 thuộc Ư(187)
n+3 | 1 | -1 | 17 | -17 | 187 | -187 |
n | -2 | -4 | 14 | -20 | 184 | -190 |
mk nhầm
4n+3 thuộc Ư(187)
4n+3 | 1 | -1 | 17 | -17 | -187 | 187 |
n | -2 | -1 | 3,5 loại | -5 | -47,5 loại | 46 |
a, \(A=\frac{2\left(4n+3\right)+187}{4n+3}=2+\frac{187}{4n+3}\)
Để A nguyên => \(\frac{187}{4n+3}\inℤ\)
=> \(4n+3\inƯ\left(187\right)\)
Đến đây bạn tự giải tiếp nha.
Đặt \(A=\frac{6n+99}{3n+4}=\frac{6n+8+91}{3n+4}=\frac{2\left(3n+4\right)91}{3n+4}+\frac{91}{3n+4}=2+\frac{91}{3n+4}\)
a) Để A là số tự nhiên thì \(91⋮3n+4⋮3n+4\)là ước của 91 hay 3n + 4 \(\in\left\{1;7;13;91\right\}\)
Ta có bảng :
3n + 4 | 1 | 7 | 13 | 91 |
n | -1 | 1 | 3 | 29 |
nhận xét | loại | thỏa mãn | thỏa mãn | thỏa mãn |
Vậy ......
b) Để A là phân số tối giản thì \(91\text{không chia hết cho 3n + 4 hay 3n + 4 không là ước của 91}\)
=> 3n + 4 ko chia hết cho ước nguyên tố của 91
=> 3n + 4 ko chia hết cho 7 => \(n\ne7k+1\)
=> 3n + 4 ko chia hết cho 13 => \(n\ne13m+3\)
\(\frac{8n+193}{4n+3}=\frac{4n+4n+3+3+187}{4n+3}=\frac{\left(4n+3\right)+\left(4n+3\right)+187}{4n+3}=\frac{2.\left(4n+3\right)+187}{4n+3}=2+\frac{187}{4n+3}\)
Để \(2+\frac{187}{4n+3}\) là số nguyên <=> \(\frac{187}{4n+3}\) là số nguyên
=> 4n + 3 ∈ Ư ( 187 )
a) \(A=\frac{8n+143}{4n+3}=\frac{8n+6+137}{4n+3}=2+\frac{137}{4n+3}\)
Để A là số tự nhiên thì 137 chia hết cho 4n - 3
\(\Rightarrow\) 4n - 3 \(\in\) Ư(137) = {1;137}
\(\Rightarrow\) n \(\in\) {1;35}
b) Để A là phân số tối giản thì 137 không chia hết cho 4n + 3
\(\Rightarrow\) n \(\notin\) {1;35}
mình gợi ý nhe để phân số A có giá trị nguyên thì 8n+143 phải chia hết 4n+3