Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Ta có: \(\frac{7n-8}{2n-3}\)= \(\frac{7}{2}\).\(\frac{2}{7}\).\(\frac{7n-8}{2n-3}\)=\(\frac{7}{2}\).\(\frac{14n-16}{14n-21}\)
=\(\frac{7}{2}\).\(\frac{14n-21+5}{14n-21}\)=\(\frac{7}{2}\).(1 +\(\frac{5}{14n-21}\))
=\(\frac{7}{2}\)+\(\frac{5}{4n-6}\)
*Để phân số đó có GTLN thì \(\frac{5}{4n-6}\)có GTLN.
=>4n-6 phải lớn hơn 0 và có GTNN.
*Nếu 4n -6 = 1 thì n =\(\frac{7}{4}\)
( ko thỏa mãn x thuộc N)
*Nếu 4n - 6 = 2 thì n = 2 ( thỏa mãn)
Vậy n = 2 thì phân số \(\frac{7n-8}{2n-3}\)có GTLN.
Để\(\frac{7n-8}{2n-3}\) đạt giá trị lớn nhất
=>2n-3 là số nguyên dương bé nhất
=>2n-3=1
2n=4
n=2
k nha
refer\(mệt r chỉ muốn bài dễ thoi)
https://hoc24.vn/cau-hoi/tim-so-tu-nhien-n-de-phan-so-7n-82n-3-co-gia-tri-lon-nhat.159546081385
refer
hôm qua có r mà
https://hoc24.vn/cau-hoi/tim-so-tu-nhien-n-de-phan-so-7n-82n-3-co-gia-tri-lon-nhat.159546081385
(7n-8)/(2n-3) = (7n - 21/2 + 5/2)/(2n - 3) = [(7/2)(2n-3) + 5/2]/(2n-3) =
= 7/2 + 5/(4n-6)
Phân số đã cho có GTLN khi 5/(4n-6) có GTLN, tức là khi 4n-6 có giá trị dương nhỏ nhất (với n là stn) hay n = 2
Trả lời : n = 2 (khi đó phân số có GTLN là 7/2 + 5/2 = 6)
Ta có: (7n-8) / (2n-3)=7/2 + (5) / (4n-6) . Suy ra để ( 7n - 8 ) / ( 2n - 3 ) có GTLN thì 4n-6 có giá trị dương nhỏ nhất . Suy ra: 4n-6=2 (vì n thuộc N) => n=2. =>GTLN cần tìm là 6. Xong he.he....
A =\(\frac{6n-8}{2n-3}=\frac{3\left(2n-3\right)+1}{2n-3}\)= \(3+\frac{1}{2n-3}\)
TH1 : n < \(\frac{3}{2}\)=> 2n - 3 < 0 => A = \(3+\frac{1}{2n-3}< 3\) (1)
TH2 : n > \(\frac{3}{2}\)=> 2n - 3 > 0
Phân số \(\frac{1}{2n-3}\)có tử và mẫu đều dương tử không đổi nên đạt GTLN
<=> 2n - 3 đạt giá trị nhỏ nhất
<=> 2n - 3 là số nguyên dương nhỏ nhất
<=> 2n - 3 = 1 => n = 2
Khi đó A = 3 + 1 = 4 (2)
So sánh (1) và (2) ta có GTLN của A = 4 khi n = 2
thank you !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!