Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ n+4 chia hết cho n+1
Ta có : n+4=(n+1) + 3
Thì ta có n + 1 +3 sẽ chia hết cho n+1
Suy ra 3 chia hết cho n+1
n+1 sẽ thuộc ước của 3
Ư(3) = ((1;3))
Suy ra n+1=1 hoặc n+1=3
+) n+1=1
n = 1-1
n = 0
+) n+1= 3
n = 3-1
n = 2
Suy ra n có thể bằng 0 hoặc 2
Ta có : A = \(\frac{2n+7}{n+3}\)=\(\frac{2\left(n+3\right)+1}{n+3}\)= 2 + \(\frac{1}{n+3}\)
Do đó: Để A là số nguyên thì n + 3 \(\in\)Ư(1) = {-1;1}
=> n = -4, -2
TK :
Gọi ƯCLN(2n-1; 3n+2) là d. Ta có:
2n-1 chia hết cho d => 6n-3 chia hết cho d
3n+2 chia hết cho d => 6n+4 chia hết cho d => 6n-3+7
=> 6n-3+7-(6n-3) chia hết cho d
=> 7 chia hết cho d
Giả sử phân số rút gọn được
=> 2n-1 chia hết cho 7
=> 2n-1+7 chia hết cho 7
=> 2n+6 chia hết cho 7
=> 2(n+3) chia hết cho 7
=> n+3 chia hết cho 7
=> n = 7k - 3
Vậy để phân số trên tối giản thì n ≠ 7k - 3
ghi mink đáp án thôi nha