K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2016

Ta có:

(n2−8)2+36

=n4−16n2+64+36

=n4+20n2+100−36n2

=(n2+10)2−(6n)2

=(n2+10+6n)(n2+10−6n)

Mà để (n2+10+6n)(n2+10−6n) là số nguyên tố thì n2+10+6n=1 hoặc n2+10−6n=1

Mặt khác ta có n2+10−6n<n2+10+6n  n2+10−6n=1 (n thuộc N) 

 n2+9−6n=0 hay (n−3)2=0  n=3

Vậy với n=3 thì (n2−8)2+36 là số nguyên tố
_________________

23 tháng 12 2019

Ta có

(n^2-8)^2

=n^4-16n^2+100

=n^4+100+20n^2-36n^2

=(n^2+10)^2-(6n)^2

=(n^2+10-6n)*(n^2+10+6n)

thử 2 trường hợp ta được n=3 thì t/m

21 tháng 2 2017

Ta có:

A=\(12n^2-5n-25=\left(4n+5\right)\left(3n-5\right)\)

do \(n\in N\)=> 4n+5>3n-5

Do A là số nguyên tố nên: \(\hept{\begin{cases}3n-5=1\\4n+5=p\end{cases},p\in P}\)

Từ pt 1: => n=2

thay vào pt 2 được 4.2+5=13 nguyên tố

Vậy n=2

AH
Akai Haruma
Giáo viên
16 tháng 10 2021

Lời giải:

$A=n^3-n^2-n-2=(n-2)(n^2+n+1)$

Để $A$ là số nguyên tố thì 1 trong 2 thừa số $n-2, n^2+n+1$ có giá trị bằng $1$ và số còn lại là số nguyên tố

Mà $n^2+n+1> n-2$ nên:

$n-2=1$

$\Rightarrow n=3$

Thay $n=3$ vô ta thấy $A=13$ là snt (thỏa mãn)

5 tháng 10 2016

a) - Do p là số nguyên tố nên p là số tự nhiên.

*) Xét p=3k+1 => \(p^2+8=\left(3k+1\right)^2+8=9k^2+6k+9⋮3\) (hợp số)

*) Xét p=3k+2 => \(p^2+8=\left(3k+2\right)^2+8=9k^2+12k+12⋮3\) (hợp số)

*) Xét p=3k => k=1 do p là số nguyên tố => \(p^2+8=9+8=17\) (t/m)

Ta có: \(p^2+2=11\). Mà 11 là số nguyên tố => điều phải chứng minh.

b) (Làm tương tự bài trên)

 - Do p là số nguyên tố => p là số tự nhiên.

*) Xét p=3k+1 => \(8p^2+1=8\left(3k+1\right)^2+1=8\left(9k^2+6k+1\right)+1=3k.8\left(3k+2\right)+\left(8+1\right)⋮3\)(hợp số)

*) Xét p=3k+2 => \(8p^2+1=8\left(3k+2\right)^2+1=8\left(9k^2+12k+4\right)+1=3k.8\left(3k+4\right)+\left(32+1\right)⋮3\) (hợp số)

*) Xét p=3k => k=1 Do p là số nguyên tố => \(8p^2+1=8.9+1=73\)(t/m)

Ta có : \(2p+1=7\). Mà 7 là số nguyên tố => Điều phải chứng minh.

30 tháng 9 2016

làm ơn giải hộ mình nhanh lên

28 tháng 10 2017

Đặt A = 52n2−6n+2−12=25n2−3n+1−12≡12n2−3n+1−12(mod13)52n2−6n+2−12=25n2−3n+1−12≡12n2−3n+1−12(mod13)

                    =>12n2−3n+1−12=12.(12n(n−3)−1)12n2−3n+1−12=12.(12n(n−3)−1)

                   (12n(n−3)−1)(12n(n−3)−1) chia luôn chia 13 dư 1 do n(n-3) luôn chia hết cho 2

                   => 52n2−6n+2−12⋮1352n2−6n+2−12⋮13 mà A lại là số nguyên tố nên A= 13 

                  =>  52n2−6n+2=2552n2−6n+2=25 => n =3

               Vậy n = 3

28 tháng 10 2017

n2−3n+1=n2−n−2n+1 là số lẻ nên ta có 52n2−6n+2−12≡1−1n2−3n+1≡0(mod13)

Do đó 52n2−6n+2−12=13⇔52n2−6n+2=25⇔2n2−6n+2=2⇔n=0 hoặc 

24 tháng 7 2016

a ) Với p = 3 , p là số nguyên tố và \(p^2+8=3^2+8=17\)cũng là số nguyên tố => p = 3 thỏa mãn đề bài 

Xét với p > 3 , ta biểu diễn : 

\(p^2+8=\left(p^2-1\right)+9=\left(p-1\right)\left(p+1\right)+9\)

Xét ba số nguyên liên tiếp : p - 1 , p , p + 1 ắt sẽ có một số chia hết cho 3.

Vì p là số nguyên tố , p > 3 nên p không chia hết cho 3. Vậy một trong hai số p - 1 , p + 1 chia hết cho 3. Suy ra tích (p - 1)(p + 1) chia hết cho 3. Lại có 9 chia hết cho 3

\(\Rightarrow p^2+8\)chia hết cho 3. (vô lí vì  \(p^2+8\)là số nguyên tố lớn hơn 3) 

Vậy p = 3 \(\Rightarrow p^2+2=3^2+2=11\)là số nguyên tố (đpcm)

b) Với p = 3 thì \(8p^2+1\)là số nguyên tố.

Với p là số nguyên tố, p > 3 : 

Ta có : \(8p^2+1=8\left(p^2-1\right)+9=8\left(p-1\right)\left(p+1\right)+9\)

Xét ba số nguyên liên tiếp : p - 1 , p , p + 1 , ắt sẽ tìm được một số chia hết cho 3

Vì p là số nguyên tố, p > 3 , nên p không chia hết cho 3. Vậy một trong hai số p - 1 , p + 1 chia hết cho 3 

Suy ra tích (p - 1)(p + 1) chia hết cho 3 . Lại có 9 chia hết cho 3

=> 8p2 + 1 chia hết cho 3 (vô lí vì 8p2 + 1 là số nguyên tố lớn hơn 3)

Vậy p = 3 . Suy ra 2p + 1 = 7 là số nguyên tố. (đpcm)

29 tháng 4 2020

Số cần tìm là: 48