Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 12:
1) A = x2 - 6x + 11
= (x2 - 6x + 9) + 2
= (x - 3)2 + 2
Ta có: (x - 3)2 ≥ 0 ∀ x
Dấu ''='' xảy ra khi x - 3 = 0 ⇔ x = 3
Do đó: (x - 3)2 + 2 ≥ 2
Hay A ≥ 2
Dấu ''='' xảy ra khi x = 3
Vậy Min A = 2 tại x = 3
2) B = x2 - 20x + 101
= (x2 - 20x + 100) + 1
= (x - 10)2 + 1
Ta có: (x - 10)2 ≥ 0 ∀ x
Dấu ''='' xảy ra khi x - 10 = 0 ⇔ x = 10
Do đó: (x - 10)2 + 1 ≥ 1
Hay B ≥ 1
Dấu ''='' xảy ra khi x = 10
Vậy Min B = 1 tại x = 10
Bài 1: Phân tích các đa thức sau thành nhân tử:
a, 2020x2 - 2019x -1
= 2020x2 - 2020x + x - 1
= 2020x(x - 1) + (x - 1)
= (2020x + 1)(x - 1)
b, x(x+4)(x+6)(x+10) +128
=(x2 +10x)(x2 + 10x + 24) + 128 (*)
Đặt x2 + 10x = a. Thay vào (*) ta được:
a(a + 24) + 128
= a2 + 24a +128
= a2 + 8a + 16a + 128
= a(a + 8) + 16(a + 8)
= (a + 16)(a + 8)
= (x2 + 10x +16)(x2 + 10x + 8)
= (x2 + 2x + 8x + 16)(x2 + 2x5 + 52) -17
= [x(x + 2) + 8(x + 2)](x + 5)2 - 17
= (x + 8)(x + 2)(x + 5)2 - 17
Gọi Ư CLN của tử và mẫu là d => 3n+1 chia hết cho d, 5n+2 chia hết cho d . Sau đó nhân 3n+1 với 5 và 5n+2 với 3, rồi lấy mẫu trừ tử
=> 15n+6-(15n+5) chia hết cho d => 1 chia hết cho d => d=1=> (3n+1;5n+2)=1(ĐFCM)
Bài 2:
x=y+1 =>x-y=1
Ta có :
(x-y)(x+y)(x2+y2)(x4+y4)= (x2-y2)(x2+y2)(x4+y4)
=(x4-y4)(x4+y4)=x8-y8 (ĐFCM)
Bài 1:
Ta có: \(9(x-1)^2-4(2x+3)^2=(3x-3)^2-(4x+6)^2\)
\(=(3x-3-4x-6)(3x-3+4x+6)=-(x+9)(7x+3)\)
Bài 2:
Có: \(x^2-x+\frac{9}{20}=x^2-2x.\frac{1}{2}+\frac{1}{4}+\frac{1}{5}=\left(x-\frac{1}{2}\right)^2+\frac{1}{5}\)
Ta thấy \(\left(x-\frac{1}{2}\right)^2\geq 0\forall x\in\mathbb{R}\Rightarrow x^2-x+\frac{9}{20}\geq \frac{1}{5}>0\forall x\in\mathbb{R}\)
Ta có đpcm.
Bài 3:
Thực hiện phân tích:
\(f(x)=x^3-8x^2+ax-5=x(x^2-3x+1)-5(x^2-3x+1)+ax-16x\)
\(=(x-5)(x^2-3x+1)+ax-16x\)
Thấy rằng bậc của \(ax-16x\) nhỏ hơn bậc của $g(x)$ nên $ax-16x$ là dư của $f(x)$ cho $g(x)$
Để \(f(x)\vdots g(x)\Rightarrow ax-16x=0\forall x\Rightarrow a=16\)
Bài 4:
Để \(\overline{2017x}\vdots 12\Leftrightarrow \left\{\begin{matrix} \overline{2017x}\vdots 3(1)\\ \overline{2017x}\vdots 4(2)\end{matrix}\right.\)
\((1)\Leftrightarrow 2+0+1+7+x\vdots 3\Leftrightarrow 10+x\vdots 3\Leftrightarrow x+1\vdots 3\)
\((2)\Leftrightarrow \overline{7x}\vdots 4\Rightarrow x\in\left\{2;6\right\}\)
Từ hai điều trên suy ra \(x=2\)
Bài 5:
Ta có: \(x+\frac{1}{x}=\sqrt{2017}\Rightarrow \left(x+\frac{1}{x}\right)^2=2017\Leftrightarrow x^2+\frac{1}{x^2}+2=2017\)
\(\Leftrightarrow x^2+\frac{1}{x^2}=2015\)
Như vậy: \(A=3x^2-5+\frac{3}{x^2}=3\left(x^2+\frac{1}{x^2}\right)-5=3.2015-5=6040\)
Bài 6:
Đặt \(\left\{\begin{matrix} x+y+z=a\\ xy+yz+xz=b\end{matrix}\right.\). ĐKĐB tương đương với:
\(\left\{\begin{matrix} a^2-2b=3\\ a+b=6\rightarrow b=6-a\end{matrix}\right.\)
\(\Rightarrow a^2-2(6-a)=3\Leftrightarrow a^2-2a+15=0\Leftrightarrow (a+5)(a-3)=0\Leftrightarrow a=3\)
(do \(a\in\mathbb{R}^+\))
Kéo theo \(b=6-a=3\Rightarrow x^2+y^2+z^2=xy+yz+xz\)
Theo BĐT AM-GM thì \(x^2+y^2+z^2\geq xy+yz+xz\)
Dấu bằng xảy ra khi \(x=y=z\Rightarrow x=y=z=1\) do \(x+y+z=3\)
Bài 2:
a: \(A=-7x^6y^{3-n}+\dfrac{5}{2}x^{2n-3}y^{4-n}\)
Để đây là phép chia hết thì 3-n>=0; 4-n>=0; 2n-3>=0
=>3/2<=n<=3
b: \(B=\dfrac{-5}{3}x^{4-n}y+x^{3-n}y^{2-n}\)
Để đây là phép chia hết thì 4-n>=0; 3-n>=0; 2-n>=0
=>n<=2