Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4n+21 chia hết cho 2n+3
=> 4n+6+15 chia hết cho 2n+3
Vì 4n+6 chia hết cho 2n+3
=> 15 chia hết cho 2n+3
=> 2n+3 thuộc Ư(15)
Bạn tự kẻ bảng làm nốt nha.
Ta có \(\frac{4n+21}{2n+3}=\frac{4n+6+15}{2n+3}=\frac{4n+6}{2n+3}+\frac{15}{2n+3}=\frac{2\left(2n+3\right)}{2n+3}+\frac{15}{2n+3}=2+\frac{15}{2n+3}\)
\(\Rightarrow2n+3\inƯ\left(15\right)=\left\{1;3;5;15\right\}\)
Nếu 2n + 3 = 1 thì 2n = - 2 <=> n = - 1 (loại)
Nếu 2n + 3 = 3 thì 2n = 0 <=> n = 0 (nhận)
Nếu 2n + 3 = 5 thì 2n = 2 <=> n = 1 (nhận)
Nếu 2n + 3 = 15 thì 2n = 12 <=> n = 6 (nhận)
Vậy n \(\in\) {0;1;6}
Ta có:4n-5=4n+2-7=2(2n+1)-7
Để 4n-5 chia hết cho 2n+1 thì 7 chia hết cho 2n+1
=>2n+1\(\in\)Ư(7)={-7,-1,1,7)
=>2n\(\in\){-8,-2,0,6}
=>n\(\in\){-4,-1,0,3}
2n +1 chia hết cho 2n + 1
suy ra 2 ( 2n + 1 ) chia hết cho 2n + 1
= 4n + 2 chia hết cho 2n + 1
suy ra ; ( 4n + 3 ) - ( 4n + 2 ) chia hết cho 2n + 1
= 1 chia hết cho 2n + 1
=> 2n + 1 thuộc vào Ư( 1 ) = 1
=> n = 1
Tìm số tự nhiên n để 4n+3 chia hết cho 2n+1
Giải:Ta có:4n+3=4n+2+1=2(2n+1)+1
Để 4n+3 chia hết cho 2n+1 thì 1 phải chia hết cho 2n+1
\(\Rightarrow2n+1\inƯ\left(1\right)=\left\{-1,1\right\}\).Vì n là số tự nhiên nên \(n\ge0\) nên 2n+1\(\ge1\)
Nên chỉ có 2n+1=1 thỏa mãn nên n=0 thỏa mãn
Ta có: 4n+3=2(2n+1) +1
Vì 2(2n+1) chia hết 2n+1
=>1 chia hết 2n+1
=>2n+1\(\in\)Ư(1)
Mà Ư(1)={1}
Do đó , ta có:
2n+1=1
2n =0
n=0
Vậy n=0
4n+3 chia hết cho 2n+1
=> 4n+2+1 chia hết cho 2n+1
Vì 4n+2 chia hết cho 2n+1
=> 1 chia hết cho 2n+1
=> 2n+1 thuộc Ư(1)
=> 2n+1 thuộc {1; -1}
=> 2n thuộc {0; -2}
=> n thuộc {0; -1}
bạn tham khảo thêm
Vì 2n+3 chia hết cho 2n+3 nên 2.(2n+3) chia hết cho 2n+3
Suy ra 4n+6 chia hết cho 2n+3
Áp dụng quy tắc đồng dư ta có vì 4n+21 chia hết cho 2n+3
Suy ra (4n+21)-(4n+6) chia hết cho 2n+3
Suy ra 15 chia hết cho 2n+3 suy ra 2n+3 thuộc ước của 15
+ ) 2n+3 = 1 (loại)
+ ) 2n+3 = 3 suy ra n = 0
+ ) 2n+3 = 5 suy ra n = 1
+ ) 2n+3 = 15 suy ra n = 6
Đáp số : n = 0; n = 1 và n = 6 thì 4n+21 chia hết cho 2n+3
4n+3 chia hết cho 2n+1
=> 4(n+1)-1 chia hết cho 2n+1
=> 1 chia hết cho 2n+1
=> 2n+1 \(\in\)Ư(1)=1
=> n=0
Vậy n=0
ta có 4n+ 7 chia hết cho 2n +1 (1)
2n+ 1 chia hết cho 2n+1
=> 2(2n+1) chia hết cho 2n+1
=> 4n+2 chia hết cho 2n+1 (2)
từ (1) và (2)